• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 11
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of membrane gas separation processes to CO2 and H2 recovery from steelmaking gases for carbon capture and use / Étude du traitement et de la valorisation des gaz de haut fourneau de l’industrie sidérurgique par des procédés de perméation membranaire appliqués à la récupération sélective de CO2 et H2

Ramirez Santos, Álvaro Andrés 12 December 2017 (has links)
L’acier est produit aujourd’hui principalement en faisant appel à une technologie basée sur le procédé haut fourneau-convertisseur à l’oxygène, conduisant à trois types d’émissions principales: le gaz de haut fourneau (BFG), le gaz de cokerie (COG), et le gaz de convertisseur (BOFG). Dans le cadre du projet VALORCO, une analyse des possibilités de réduction des émissions carbonées, associée à une valorisation des émissions de la sidérurgie, a été réalisée. Une des voies étudiées est la production de composés d’intérêt industriel tel que méthanol, pouvant être produit par transformation chimique du CO et/ou CO2 contenus dans les émissions, associé à de l’hydrogène. L’objectif principal de ce travail de thèse consiste à évaluer les possibilités offertes par le procédé de perméation gazeuse, appliqué à la récupération sélective de ces composés dans les 3 types d’émissions. Dans un premier temps, un état de l’art des différents projets dédiés à la capture (CCS) et à la valorisation (CCU) des émissions dans l’industrie de l’acier est présenté, avec une attention particulière aux différentes technologies de séparation des gaz. Des mesures expérimentales de sélectivité et de perméance pour différentes conditions de température et de pression, réalisées sur banc dédié avec deux matériaux membranaires disponibles commercialement et sélectif à l’hydrogène (vitreux) et au CO2 (élastomère) ont permis une étude paramétrique systématique par simulation des performances de séparation du procédé appliqué au BFG, COG et BOFG. Une comparaison des procédés basés sur un seul ou plusieurs étages de perméation, y compris avec des boucles de recirculation, a ensuite été entreprise dans un environnement de type Process System Engineering (PSE, logiciel Aspen Plus). L’influence des paramètres opératoires (rapport de pression, température, taux de prélèvement) sur les performances de séparation a été réalisée, conduisant à une cartographie des compositions atteignables. La consommation énergétique et la surface membranaire nécessaires pour chaque configuration permettent au final une optimisation techno-économique du procédé, sur la base d’un modèle économique intégré aux conditions de simulation / Steel is produced today mainly in a blast furnace-oxygen converter process, leading to three main types of emissions: blast furnace gas (BFG), coke oven gas (COG), and converter gas (BOFG). In the framework of the VALORCO project, an analysis of the possibilities for reducing carbon emissions, combined with the valorization of emissions from the steel industry, was carried out. One of the routes studied is the production of compounds of industrial interest such as methanol, which can be produced by chemical transformation of the CO and / or CO2 contained in the emissions associated with hydrogen. The main objective of this thesis work is to evaluate the possibilities offered by the gas permeation process applied to the selective recovery of these compounds in the three types of emissions. Initially, a state of the art of the various projects dedicated to the capture (CCS) and the valorization (CCU) of the emissions in the steel industry is presented, with particular attention to the different gas separation technologies. Experimental measurements of selectivity and permeance for different temperature and pressure conditions, carried out on a dedicated bench with two commercially available membrane materials, one selective to hydrogen (glassy) and one to CO2 (rubbery), allowed a systematic parametric study by simulation of the separation performance of the process applied to the BFG, COG and BOFG. A comparison of the processes based on one or more permeation stages, including recirculation loops, was then undertaken in a Process System Engineering (PSE) environment (Aspen Plus software). The influence of the operating parameters (pressure ratio, temperature, stage cut) on the separation performance was evaluated, leading to a mapping of attainable compositions. The energy consumption and the membrane surface required for each configuration allow a techno-economic optimization of the process, on the basis of an economic model integrated to the simulation conditions
2

Accelererad karbonatisering av betong : En ekonomisk analys och jämförelse mellan CCS och CCU

Baidoun, Mia, Al Yabroudi, Haifaa January 2024 (has links)
AbstractThis research suggests that carbonation of concrete can significantly reduce greenhouse gas emissions, and to limit the 1.5º C rise within the next years. The accelerated carbonation method is of particular interest within the industry. By harnessing industrial flue gases, the carbonation process can be further accelerated. This study aims to assess whether the use of industrial flue gases to accelerate the carbonation of concrete can be economically viable compared to purchasing emission rights.The study is conducted theoretically with a focus on accelerated carbonation in waste management, only investigating industrial flue gases to speed up the carbonation process. Accelerated carbonation, where carbon dioxide is bound in concrete through a faster process than the natural carbonation process.The work demonstrates that the climate conditions of concrete affect carbon dioxide absorption, with outdoor concrete absorbing more carbon dioxide than indoor concrete. Additionally, the study shows that smaller fraction sizes in concrete result in greater carbon dioxide uptake, with the fraction size of 0-4 mm having the highest uptake of 58 kg CO2/ 𝑚3 in an hour. Cost calculations suggest that accelerated carbonation can be a cost-effective method for reducing carbon dioxide emissions compared to other techniques such as Carbon Capture and Storage (CCS) and Carbon Capture and Utilization (CCU). A difference in investment costs of 9 billion Swedish Crowns was observed, including repairs and maintenance. / Valet av byggmaterial är avgörande för både kostnader och miljöpåverkan inom byggbranschen. Genom att välja rätt material kan branschen minska sin miljöpåverkan och främja hållbar utveckling. Betong, är ett återvinningsbart material med lång historia som ett byggnadsmaterial och dess mineraliska sammansättning gör det till ett bra alternativ på rätt plats.Forskningen tyder att karbonatisering av betong kan minska utsläppen av växthusgaser betydligt, och accelererad karbonatisering har särskilt intresse inom branschen. Genom att utnyttja industriella rökgaser kan karbonatiseringsprocessen påskyndas ytterligare. Denna studie syftar till att bedöma om användningen av industriella rökgaser för att accelerera karbonatisering av betong kan vara ekonomiskt lönsamt jämfört med att köpa utsläppsrätter.Studien genomförs teoretiskt med fokus på accelererad karbonatisering vid avfallshantering, den undersöker endast industriella rökgaser för att påskynda karbonatiseringsprocessen.Accelererad karbonatisering, där koldioxid binds i betong genom en snabbare process än den naturliga karbonatiseringsprocessen.Arbetet visar att betongens klimatförhållanden såsom fukt och temperatur påverkar koldioxidabsorptionen, med betong som är utsatt för utomhusklimat som absorberar mer koldioxid än inomhusbetong. Dessutom visar studien, att större exponerad specifika ytor, såsom finare partikelstorlekar, leder till snabbare koldioxidupptag. Fraktionsstorleken 0–4 mm som har det högsta upptaget på 58 kg CO2/𝑚3.Kostnadsberäkningar tyder på att accelererad karbonatisering kan vara en kostnadseffektiv metod för att minska koldioxidutsläpp jämfört med andra tekniker som CCS och CCU. När det gäller implementering är investeringskostnadern väsentligt lägre än för implementering av en CCS-anläggning. Resultatet visar en skillnad i investeringskostnader på 9 miljarder kronor observerades, inklusive reparation och underhåll.
3

A techno-economic assessment of Steam-methane reforming to methanol : Comparative analysis of CO2 and Syngas to methanol / En teknoekonomisk utvärdering av ång-metanomformning till metanol : Jämförande analys av CO2 och Syngas till metanol

Sörensson, Oskar January 2024 (has links)
As society grapples with challenges of net zero emission, one big remaining challenge is heavy and aviation traffic due to the associated challenge of electrifying these sectors. One potential solution for this is E-fuels. E-fuels are hydrocarbon produced from electrolysis hydrogen and carbon dioxide that receive all their energy from renewable non-organic sources. The simplest E-fuel is methanol. Currently methanol is mainly produced from syngas derived from natural gas reforming also known as steam-methane reforming (SMR). A SMR process break down methane into hydrogen, CO2, and CO with the uses of steam. This syngas is then hydrogenated and forms methanol. One alternative production route to the classic syngas hydrogenation is to capture CO2 and add electrolysis hydrogen and then hydrogenate the mixture to from E-methanol.  This thesis aims to compare the traditional production method with joint SMR-flue gas CO2 hydrogenation plant as well as a direct air capture (DAC) CO2 hydrogenation plant. This comparison will be evaluated by their engineering performance, economic performance, and environmental performance.  This evaluation is done with process simulations in Chemcad as well as Excel. In Chemcad the desulfurization step, SMR, carbon capture, and distillation is simulated. The hydrogenation reactors are simulated in Excel with kinetic data. This process data in the foundation of the engineering performance and is used to determine hydrogen and carbon utilization along with energy and water demand. For the economic evaluation CAPEX is calculated from prices of related units adjusted for size and inflation. The OPEX is based on simulation data and modelled in Excel along with net present value (NPV). The environmental performance focuses on global warming potential as well as fossil resources depletion (FD).  The DAC system has both the highest hydrogen and carbon utilization at 98% and 96,9% respectively but suffer from the highest energy and water demand. Both flue gas method and syngas method have similar hydrogen utilization at around 83,5%, but they differ significantly with carbon utilization with 87,2% and 64,7 respectively. The syngas method has the highest net profit per ton methanol along with the highest NPV and the lowest CAPEX cost out of all three methods. The flue gas method still produces a net profit, but significantly lower than the syngas method. Its CAPEX is also significantly higher than its NPV. The DAC system as negative net profit as well as the highest CAPEX by a wide margin. The environmental impact of the flue gas system is significantly lower than that of the syngas route with less than a fourth of the CO2 eq. emissions. It also has a lower FD due to its higher carbon utilization which results in a higher yield methanol per ton natural gas.  Whilst the flue gas hydrogenation has several advantages over the syngas route and the economic improvements with better optimization for the carbon capture units would bring the net profit per ton methanol more in line with the syngas route, as of today it still is not economically defensible. / När samhället kämpar med utmaningarna kring nettonollutsläpp, kvarstår en stor utmaning inom tung- och flygtrafik på grund av den associerade svårigheten med att elektrifiera dessa sektorer. En potentiell lösning för detta är E-bränslen. E-bränslen är kolväten producerade från elektrolysväte och koldioxid som får all sin energi från förnybara icke-organiska källor. Den enklaste E-bränslen är metanol. För närvarande produceras metanol främst från syntes gas som kommer från naturgasreformering, även känd som ångmetanreformering (SMR). En SMR-process bryter ner metan till väte, CO2 och CO med hjälp av ånga. Denna syntes gas får sedan genomgå hydrering för att bilda metanol. Ett alternativa till denna produktionsmetod är att fånga CO2 och tillsätta elektrolysväte och sedan låta blandningen hydrera för att bilda E-metanol.  Detta examensarbete syftar till att jämföra den traditionella produktionsmetoden med en gemensam SMR-rökgas-CO2-hydreringanläggning samt en direkt luftinfångning (DAC) CO2-hydreringanläggning. Denna jämförelse kommer att utvärderas utifrån deras tekniska prestanda, ekonomiska prestanda och miljöprestanda.  Denna utvärdering görs med processimuleringar i Chemcad samt Excel. I Chemcad simuleras avsvavlingssteget, SMR, koldioxidsinfångning och destillation. Hydreringsreaktorerna simuleras i Excel med kinetiska data. Processdata från dessa simuleringar utgör grunden för den tekniska prestandan och används för att bestämma väte- och kolutnyttjande tillsammans med energi- och vattenbehov. För den ekonomiska utvärderingen beräknas CAPEX från priser på relaterade enheter justerade för storlek och inflation. OPEX baseras på simuleringsdata och modelleras i Excel tillsammans med nettonuvärde (NPV). Miljöprestandan fokuserar på den globala uppvärmningspotentialen samt utarmningen av fossila resurser (FD).  DAC-systemet har både den högsta väte- och kolutnyttjande på 98 % respektive 96,9 %, men lider av det högsta energi- och vattenbehovet. Både rökgasmetoden och syntesgasmetoden har liknande väteutnyttjande på cirka 83,5 %, men de skiljer sig betydligt när det gäller kolutnyttjande med 87,2 % respektive 64,7 %. Syntesgasmetoden har den högsta nettoförtjänsten per ton metanol samt det högsta NPV och den lägsta CAPEX-kostnaden av alla tre metoder. Rökgasmetoden ger fortfarande en nettoförtjänst, men betydligt lägre än syntesgasmetoden. Dess CAPEX är också betydligt högre än dess NPV. DAC-systemet har negativ nettoförtjänst samt den högsta CAPEX med en bred marginal. Miljöpåverkan från rökgassystemet är betydligt lägre än den från syntes gas metoden med mindre än en fjärdedel av CO2-ekvivalenta utsläpp. Det har också en lägre FD på grund av sitt högre kolutnyttjande vilket resulterar i ett högre utbyte av metanol per ton naturgas.  Trots att rökgashydrering har flera fördelar över syntesgasvägen och de ekonomiska förbättringarna med bättre optimering för koldioxidavskiljningsenheterna som skulle få nettoförtjänsten per ton metanol mer i linje med syntesgasvägen, är metoden fortfarande inte ekonomiskt försvarbart i dagsläget.
4

A Study on collaborative forecasting mechanism for artificial leather industry in Taiwan

Teng, Wei-sheng 25 August 2010 (has links)
The bullwhip effect is known as a phenomenon of information distortion due to the lack of information sharing and the forecast error. This phenomenon could cause the productions plan to be instable and the inventory fluctuation among the supply chain members. Those situations above will also cause the fluctuation of purchasing costs to downstream members. The raising costs and inefficiency will be the burden of whole supply chain and not single party can exempts such result. Therefore, the collaboration of supply chain members is aim to solve such problems. In this study, we set the manufacturer as the logistic center among supply chain members, and operate the collaborative business. The artificial leather industry in Taiwan will be the platform of this study. Operation models will be built by the classical type, CPFR type, and CCU (collaborative and coordinative unit) type, and also to be simulated to analyze the performances through several KPIs. The result of this study can be the reference when adopting CPFR or CCU into Taiwan artificial leather industry.
5

De la neuropsychologie cognitive à la cognitique : vers une recherche transdisciplinaire

Lespinet-Najib, Véronique 03 June 2013 (has links) (PDF)
Ce document permet de décrire mon parcours scientifique et professionnel. Il est organisé en plusieurs parties : 1/ mon parcours professionnel; 2/ la thématique de la neuropsychologie de l'épilepsie et de la spécialisation hémisphérique; 3/ mes travaux actuels effectués au sein de la cognitique à travers 2 axes (l'accessibilité numérique et handicap, et, la conception centrée utilisateur) et 4/ une conclusion sur la nécessité d'aller vers une recherche transdisciplinaire.
6

Posouzení metod CCS a CCU / Assessment of CCS and CCU methods

Kroupa, Zdeněk January 2020 (has links)
The thesis focuses on CCS and CCU technologies, which could find application in industry and other sectors in the future. These technologies are used to reduce CO2 emissions, mainly from point sources. This thesis provides a comprehensive overview and division of CCS and CCU technologies and points out negative effects of its installation. Part of the work is also a comparison of individual steps of technology, both from an energetic and financial point of view. The aim is to show a wide range of influences on the final price and a significant discrepancy in the results of some scientific works. At the same time, in some parts, you can find a detailed description of individual parts of the technology.
7

Utilizing CO2 from biomethane production : Sustainability and climate performance

Cordova, Stephanie S. January 2023 (has links)
Biogas solutions offer many benefits for the environment and society, including organic waste treatment as well as being an enabler for energy and nutrient recovery. The products of anaerobic digestion are a biogas, which contains a share of 30 to 50% carbon dioxide (CO2) and 50 to 70% methane, and a liquid remanent, rich in nutrients. The biogas can be upgraded by removing the CO2 to increase the energy content, producing biomethane. At present, CO2 is considered a waste in biomethane production systems, and hence it is emitted into the atmosphere. Nevertheless, biogas upgrading technologies separate a pure-grade CO2 and, likewise, carbon capture processes, providing a pure CO2 flow that can be stored or utilized. Compared to storage, carbon capture and utilization (CCU) technologies deliver valuable carbon-based products required to sustain human activities. The valorization of green CO2 could aid the transition towards defossilization of the economy. Indeed, several CO2 utilization technologies could be incorporated into biomethane production systems, but there is still a limited understanding of the available alternatives and their potential impacts on biomethane systems. This thesis aims to investigate the integration of CO2 utilization technologies in biomethane production systems by revealing its potential, identifying alternatives, and assessing the impacts of the integration. Using Sweden as an example, scenarios of future biomethane production were employed to estimate the potential CO2 available for utilization. To complement the analysis, a qualitative approach made possible the identification of aspects that could affect CO2 utilization in biomethane production. Moreover, a multi-criteria analysis (MCA) framework was developed to identify relevant indicators for assessment and available alternatives for CO2 utilization. The research also includes a life cycle assessment (LCA) to evaluate the climate performance of relevant CCU alternatives in the biomethane production system. Results show that 160 kt of CO2 could be obtained from biomethane production in Sweden, which could potentially increase threefold from 2020 to 2030. The evaluation of alternatives for CO2 utilization includes environmental, technical, economic, and social criteria with sound indicators within an MCA framework. Indicators to evaluate each criterion provide valuable information to identify feasible and sustainable alternatives that can be integrated into biomethane plants. The identified alternatives with a high readiness level are additional methane through methanation, horticulture, mineral carbonates, fuels, pH control, bulk chemicals, and liquefied CO2 for direct use. The results provide information to decision-makers in relation to considerations to take before implementation, like energy requirements, the existence of regulations and standards, and uncertainty. In terms of the climate performance of biomethane with the inclusion of CCU alternatives, the results show a possible reduction of CO2 emissions that depends on the possibility of substituting fossil-based products. The investigated alternatives all result in lower emissions, but concrete curing and methanation using renewable hydrogen produce the best results. To conclude, the potential future increase of green CO2 from biomethane in Sweden creates opportunities to substitute fossil carbon in current applications and mature conversion pathways. Moreover, the inclusion of CCU in biomethane production contributes to reducing biomethane system emissions and diversifying its products. Possible alternatives of CCU that can be integrated into biomethane production systems in the short term include methanation and concrete curing. Other alternatives could be possible but present lower performance and higher uncertainties at the moment. / Biogaslösningar kan ge en mängd positiva miljömässiga och samhällsviktiga effekter, inklusive behandling av organiskt avfall och framställning av energi och näringsämnen. Produkterna från anaerob rötning är dels biogas, som består från 30 till 50% av koldioxid (CO2) och 50 till 70% av metan, dels en flytande rötrest med högt näringsinnehåll. Biogasen kan uppgraderas genom att ta bort CO2 för att öka energiinnehållet, och på så vis framställs biometan. CO2 ses för närvarande som en restprodukt i produktionssystemet och släpps därför vanligtvis ut i atmosfären. Tekniker för uppgradering av biogas liknar dock processer för infångning av CO2, där högkoncentrerade flöden av CO2 lagras (CCS) eller används (CCU). Till skillnad från lagring bidrar tekniken för CCU till att skapa produkter som behövs för att upprätthålla samhällsviktiga funktioner. Dessa valoriseringar av grön CO2 skulle kunna stödja övergången mot ett fossilfritt ekonomiskt system. Faktum är att det finns ett flertal tekniker som skulle kunna integreras i produktionssystem för biometan, men kunskapen om dessa tekniker och deras inverkan på biometansystemet är begränsad. Denna avhandling syftar till att undersöka integrationen av tekniska lösningar för nyttiggörande av CO2 vid framställning av biometan genom att påvisa dess potential, identifiera alternativa tekniska lösningar, och utvärdera integrationens följder. Med Sverige som exempel skapades scenarier för framtida biometanproduktion för att uppskatta mängden CO2 som skulle kunna tas om hand. Som ett komplement till dessa uppskattningar tillämpades ett kvalitativt tillvägagångssätt som identifierade aspekter som skulle kunna påverka CO2-användningen vid biometanproduktion. Dessutom utvecklades ett multikriterieanalytiskt (MCA) ramverk för att identifiera relevanta indikatorer för utvärdering och möjliga alternativ för CO2-användning. En livscykelanalys (LCA) tillämpades även för att utvärdera klimatprestandan för relevanta CCU-alternativ inom produktionssystem för biometan. Forskningsresultaten visar att 160 kt skulle kunna erhållas från biometanproduktion i Sverige. För Sveriges del finns det en potential att öka den insamlade mängden CO2 från biometan upp till tre gånger under perioden 2020 till 2030. I utvärderingen av de tekniska lösningarna inkluderas miljömässiga, tekniska, ekonomiska och regulatoriska kriterier för indikatorer inom ett MCA-ramverk. Dessa indikatorer användes för att utvärdera hur respektive kriterium bidrar till att identifiera realiserbara tekniska lösningar som kan integreras i biometananläggningar. De identifierade teknikerna med hög mognadsgrad är framställning av ytterligare metan genom metanisering, biomassa, karbonatmineral, bränslen, pH-värdesreglering, baskemikalier och flytande CO2 för direkt användning. Varje alternativ har dock faktorer som skulle kunna hindra implementering, såsom höga energikrav, lagstiftningar och standarder samt hög osäkerhet. När det gäller klimatprestandan för biometan med olika CCU-alternativ visar resultaten på en möjlig minskning av CO2-utsläpp som beror på möjligheten att substituera fossilbaserade produkter. Alla de undersökta alternativen resulterar i lägre utsläpp, men härdning av betong och metanisering med förnybar vätgas ger bäst resultat. Slutsatsen som dras är att det finns en stor potential i Sverige att framställa grön CO2 från biometan vilken skulle skapa flera möjligheter att byta fossilbaserade produkter i nuvarande tillämpningar. Införandet av CCU i biometanproduktion kan dessutom bidra till att minska biogassystemets utsläpp och diversifiera produktutbudet. Möjliga alternativ för CCU som kan integreras med biometanproduktionssystem på kort sikt inkluderar metanisering och betonghärdning. Andra alternativ kan också vara aktuella, men uppvisar för närvarande lägre prestanda och högre osäkerhet. / <p>Funding agency: The Kamprad Family Foundation</p>
8

Techno-economic feasibility study of a methanol plant using carbon dioxide and hydrogen

Nyari, Judit January 2018 (has links)
In 2015, more than 80% of energy consumption was based on fossil resources. Growing population especially in developing countries fuel the trend in global energy consumption. This constant increase however leads to climate change caused by anthropogenic greenhouse gas (GHG) emissions. GHG, especially CO2 mitigation is one of the top priority challenges in the EU. Amongst the solutions to mitigate future emissions, carbon capture and utilization (CCU) is gaining interest. CO2 is a valuable, abundant and renewable carbon source that can be converted into fuels and chemicals. Methanol (MeOH) is one of the chemicals that can be produced from CO2. It is considered a basic compound in chemical industry as it can be utilised in a versatility of processes. These arguments make methanol and its production from CO2 a current, intriguing topic in climate change mitigation. In this master’s thesis first the applications, production, global demand and market price of methanol were investigated. In the second part of the thesis, a methanol plant producing chemical grade methanol was simulated in Aspen Plus. The studied plants have three different annual capacities: 10 kt/a, 50 kt/a and 250 kt/a. They were compared with the option of buying the CO2 or capturing it directly from flue gases through a carbon capture (CC) unit attached to the methanol plant. The kinetic model considering both CO and CO2 as sources of carbon for methanol formation was described thoroughly, and the main considerations and parameters were introduced for the simulation. The simulation successfully achieved chemical grade methanol production, with a high overall CO2 conversion rate and close to stoichiometric raw material utilization. Heat exchanger network was optimized in Aspen Energy Analyzer which achieved a total of 75% heat duty saving. The estimated levelised cost of methanol (LCOMeOH) ranges between 1130 and 630 €/t which is significantly higher than the current listed market price for fossil methanol at 419 €/t. This high LCOMeOH is mostly due to the high production cost of hydrogen, which corresponds to 72% of LCOMeOH. It was revealed that selling the oxygen by-product from water electrolysis had the most significant effect, reducing the LCOMeOH to 475 €/t. Cost of electricity also has a significant influence on the LCOMeOH, and for a 10 €/MWh change the LCOMeOH changed by 110 €/t. Finally, the estimated LCOMeOH was least sensitive for the change in cost of CO2. When comparing owning a CC plant with purchasing CO2, it was revealed that purchasing option is only beneficial for smaller plants.
9

An investigation of the influence of radiographic malpositioning and image processing algorithm selection on ICU/CCU chest radiographs

Elhain, Ahmed M.S.B. January 2013 (has links)
Mobile chest radiography remains the most appropriate test for critical care patients with cardiorespiratory changes and with patients who have chest tubes and lines as a monitoring tool, and to detect complications related to their use. However, one of the most frequent issues recognized radiographically with patients in critical care is chest tubes and lines malposition. This can be related to technical quality reasons which can affect their appearance in the chest radiography. This research considers how the technical quality of the ICU/CCU chest radiography can impact upon the appearance of chest tubes/lines and how that appearance can impact on the decision making. Results show that the methods used in the chest phantom experiment to estimate the degree of angulation have a large effect upon the appearance of anatomical structures, but it does not have a particularly large effect upon the apparent changes of tube/line position central venous catheter and endotracheal tube (CVC, ETT). The study also shows that there was a little difference between the two image processing algorithms, apart from the visualisation of sharp reproduction of the trachea and proximal bronchi, which was significantly better using the standard algorithm compared to the inverted algorithm. The two methods used to estimate the degree of angulation and the apparent position of the CVC/ETT on 17 mobile chest radiographs provide limited useful information to the image interpreter in estimating the degree of angulation and degree of malpositioning of the tube and line.
10

Techno economic assessment of CCUS for a biogas facility in Sweden : Evaluating the economic feasibility for three CCUS concepts / Tekno-ekonomisk undersökning av CCUS för en biogasanläggning i Sverige

Johansson, Tobias, Knutsson, Markus January 2022 (has links)
Many countries strengthen their commitments to reduce greenhouse gas emissions to limit climate change and meet the Paris Agreement (Masson-Delmotte et al., 2019). Commitments include achieving net-zero emissions or in some cases even negative emissions (Government offices of Sweden, 2020a; United Nations, 2021a). To achieve these goals, carbon dioxide capture, utilization, and storage (CCUS) is considered as an essential strategy. Carbon capture storage and utilization are recognized methods of reducing or avoiding greenhouse gas emissions (IEA, 2019a, 2020). However, the uncertainty regarding costs, financial incentives, and pricing is impeding adoption. Further information is needed for CCUS concepts both in respect to cost estimates and required market prices for CCUS, this to provide guidance for decision makers and market actors. In this report a study has investigated the economic feasibility of three CCUS concepts for a biogas facility. One CCS concept where CO2 was captured and liquefied on-site to be transported to a terminal for shipping and end storage injection. The CCS concept annual capacity was ~16 500 ton net stored CO2. Two CCU concepts were considered, where synthetic natural gas (SNG) was produced via biologic methanation with on-site produced hydrogen, both with annual production of ~88 GWh SNG. A techno-economic assessment (TEA) was carried out where the key cost-drivers were identified, and the economic feasibility assessed. With performance and cost estimates for each process step in the different considered concepts a model was built where a cash flow was created and a net present value (NPV) could be calculated. The study found transportation to be the most prominent cost driver for CCS where shipping and storage represented 57 % of the total cost of CO2 removal. The cost driver for CCU concepts was found to be hydrogen production, where the electricity for the electrolyser constituted 65 % of the total cost of produced SNG. None of the concepts were found economic feasible when the Swedish market was considered. The break-even price for CO2 removal in the CCS concept was found to be 151 €/ton, just above the assumed base value used in this study. As the voluntary market is still undeveloped it is difficult to know what price that could be expected, however, in discussion with market experts a range between 150-200 €/ton would not be unthinkable for the concept studied. For the CCU concepts to be economically feasible, the estimated minimum price levels for SNG were 184 and 193 €/MWh respectively. Comparing to the benchmark price of diesel of 125 €/MWh, both CCU concepts were concluded to be unfeasible. The sensitivity analysis showed that the CCU concepts were very sensitive to variations in electricity price. When the German fuel market was considered, all studied concepts yielded a positive business case. CCS was the only concept showing economic feasibility, while the CCU concepts remained unfeasible. In the German market a GHG reduction quota credit was accounted for which was valued higher than the carbon removal credits in the voluntary market. / Många länder stärker sina åtaganden att minska utsläppen av växthusgaser för att begränsa klimatförändringen och uppfylla Parisavtalet (Masson-Delmotte et al., 2019). I åtagandena ingår att uppnå nettonollutsläpp eller i vissa fall till och med negativa utsläpp (Regeringskansliet, 2020a; FN, 2021a). För att uppnå dessa mål anses avskiljning, nyttjande och lagring av koldioxid (CCUS) vara en viktig strategi. Avskiljning, lagring och utnyttjande av koldioxid är erkända metoder för att minska eller undvika utsläpp av växthusgaser (IEA, 2019a, 2020). Osäkerheten kring kostnader, ekonomiska incitament och prissättning hindrar dock införandet. Ytterligare information behövs för CCUS-koncept både när det gäller kostnadsberäkningar och nödvändiga marknadspriser för CCUS, detta för att ge vägledning för beslutsfattare och marknadsaktörer. I den här rapporten undersöks den ekonomiska genomförbarheten av tre CCUS-koncept för en biogasanläggning. Ett CCS-koncept där koldioxid avskiljs och kondenseras på plats för att sedan transporteras till en terminal för slutlig sjöfrakt och injektion i geologiskt lager. Den årliga kapaciteten för CCS-konceptet var ~16 500 ton nettolagrad koldioxid. Två CCU-koncept övervägdes, där syntetisk natur gas (SNG) producerades genom biologisk metanisering med vätgas producerad på plats, där båda koncepten hade en årlig produktion av ~88 GWh SNG. En tekno-ekonomisk undersökning genomfördes där de viktigaste kostnadsdrivande faktorerna identifierades och den ekonomiska genomförbarheten bedömdes. Med hjälp av prestanda- och kostnadsberäkningar för varje processteg i de olika tänkta koncepten byggdes en modell där ett kassaflöde skapades och ett netto-nuvärde kunde beräknas. I studien konstaterades att transport var den mest framträdande kostnadsdrivande faktorn för CCS, där sjöfrakt och lagring stod för 57 % av den totala kostnaden för koldioxidavskiljning. Kostnadsdrivande för CCU-konceptet var vätgasproduktionen, där el till elektrolysen utgjorde 65 % av den totala kostnaden för producerad SNG. Inget av koncepten befanns vara ekonomiskt genomförbart när den svenska marknaden beaktades. Nollpunktspriset för koldioxidavskiljning i CCS-konceptet fanns vara 151 euro/ton, vilket är strax över det antagna basvärde som används i denna studie. Eftersom den frivilliga marknaden fortfarande är outvecklad är det svårt att veta vilket pris som kan förväntas, men i diskussioner med marknadsexperter skulle ett prisintervall på 150-200 €/ton inte vara otänkbart för det studerade konceptet. För att CCU-koncepten ska vara ekonomiskt genomförbara var de uppskattade minimipriserna för SNG 184 respektive 193 €/MWh. Jämfört med referenspriset för diesel på 125 €/MWh, ansågs båda CCU-koncepten vara ekonomiskt ogenomförbara. Känslighetsanalysen visade att CCU-koncepten var mycket känsliga för variationer i elpriset. När den tyska bränslemarknaden beaktades gav alla studerade koncept ett positivt netto-nuvärde. CCS konceptet var det enda konceptet som ansågs vara ekonomiskt genomförbart, medan CCU-koncepten förblev ogenomförbara. På den tyska marknaden räknades en kvot för minskning av växthusgasutsläpp in, som värderades högre än de krediter för avskiljning av koldioxid som fanns på den frivilliga marknaden.

Page generated in 0.037 seconds