• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 3
  • 1
  • Tagged with
  • 15
  • 15
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multifunctional Catalyst Design for the Valorization of CO2

Dokania, Abhay 02 1900 (has links)
The rapid global climate change associated with increasing planetary CO$_2$ levels is possibly one of the greatest challenges existing currently. In order to address this grave problem, a variety of solutions and approaches have been proposed. It is likely that a combination of these approaches would be required to solve the multi-dimensional problem of climate change. One potential approach to mitigate carbon emissions is the concept of a ‘Circular Carbon Economy’. This approach encompasses the concept of capturing carbon emissions and reusing the captured CO$_2$ to make fuels and chemicals using renewable energy. Use of fuels and chemicals manufactured via this approach would thus avoid ‘new’ CO$_2$ emissions and prevent the accumulation of additional CO$_2$ in the atmosphere as these products will be CO$_2$-neutral. The use of CO$_2$-neutral fuels would especially be beneficial as not only would it cause a significant impact on CO$_2$ emissions in terms of volume but also it would provide a way to store energy from intermittent sources like solar, wind etc. Furthermore, these fuels can be used without requiring a significant overhaul of the energy infrastructure. One of the most promising routes for the synthesis of fuels and chemicals from CO$_2$ is via the thermal hydrogenation of CO$_2$ using multifunctional heterogeneous catalysis. Multifunctional catalysis refers to the combination of catalysts having different functionalities into a single reactor (one-pot). This catalytic route is a powerful tool for tuning the product distribution during a reaction and for enhancing the yield of target products. Thus, this PhD Thesis describes the design of several multifunctional catalyst combinations which have been applied for producing various hydrocarbon products of interest from CO$_2$ ranging from light olefins, aromatics and fuel range paraffins. The catalyst combinations consisted of a metal/metal oxide and a zeolite and depending on the configuration used, enhanced the selectivity to target products. Various advanced characterization techniques have also been utilized in order to reveal the status of active species and the underlying reaction mechanism(s).
2

Μελέτη της ηλεκτροχημικής ενίσχυσης της αναγωγής του διοξειδίου του άνθρακα σε καταλύτη ρουθηνίου (Ru) υποστηριζόμενου σε πρωτονιακό αγωγό, ΒΖΥ / Study of the electrochemical promotion of CO2 reduction over ruthenium (Ru) catalyst supported on a proton conductor, BZY

Καλαϊτζίδου, Ιωάννα 27 April 2015 (has links)
Η Υδρογόνωση του Διοξειδίου του Άνθρακα έχει προσελκύσει διεθνώς το ενδιαφέρον της επιστημονικής κοινότητας τόσο ως πιθανή πηγή ανανεώσιμων καυσίμων όσο και ως μέσο μείωσης των εκπομπών του CO2. Στην παρούσα μελέτη χρησιμοποιείται το φαινόμενο της Ηλεκτροχημικής Ενίσχυσης (Η/Ε) της κατάλυσης (EPOC) ή μη- Φαρανταϊκή Ηλεκτροχημική Τροποποίηση της καταλυτικής ενεργότητας (φαινόμενο NEMCA) για την ενίσχυση του ρυθμού και της εκλεκτικότητας της υδρογόνωσης του CO2 σε καταλύτη ρουθηνίου (Ru) υποστηριζόμενου σε πρωτονιακό αγωγό ΒZY. Αρχικά γίνεται μια Εισαγωγή για το Διοξείδιο του Άνθρακα στην οποία και εξηγείται η αναγκαιότητα της περεταίρω μελέτης της αντίδρασης υδρογόνωσης του CO2. Στο Κεφάλαιο 1 γίνεται μια εκτεταμένη αναφορά στους στερεούς ηλεκτρολύτες, με ιδιαίτερη έμφαση στους στερεούς ηλεκτρολύτες πρωτονιακής αγωγιμότητας. Στη συνέχεια στο δεύτερο Κεφάλαιο περιγράφεται το φαινόμενο της Ηλεκτροχημικής Ενίσχυσης της κατάλυσης, γίνεται μια αναφορά των μελετών Η/Ε που έχουν προηγηθεί και παρατίθενται οι κανόνες που διέπουν το συγκεκριμένο φαινόμενο. Στο τρίτο Κεφάλαιο γίνεται βιβλιογραφική ανασκόπηση της συγκεκριμένης αντίδρασης τόσο καταλυτικά όσο και ηλεκτροκαταλυτικά. Στο Κεφάλαιο 4 ακολουθεί η περιγραφή της πειραματικής διάταξης καθώς και ο χαρακτηρισμός του καταλύτη αλλά και τα πειράματα χαρακτηρισμού του ηλεκτρολύτη. Έπειτα, στο Κεφάλαιο 5 παρουσιάζονται τα πειραματικά αποτελέσματα (θερμοκρασιακά, κινητικά, δυναμικής απόκρισης κτλ.), καθώς και μια ποιοτική ανάλυση των παραπάνω αποτελεσμάτων. Και τέλος παρατίθενται τα συνολικά συμπεράσματα της συγκεκριμένης μελέτης. / The Hydrogenation of Carbon Dioxide has attracted international interest in the scientific community as a potential source of renewable fuels and as a means of reducing CO2 emissions. In this study the phenomenon of Electrochemical Promotion of Catalysis (EPOC) or non-Faradaic Electrochemical Modification of Catalytic Activity (NEMCA) is used in order to enhance the rate and selectivity of this reaction on a Ruthenium (Ru) catalyst deposited on a proton conductor (BZY). The electrochemical promotion of the hydrogenation of CO2 on polycrystalline Ru deposited on a BZY (BaZr0.85Y0.15O3 + 1wt% NiO), a proton conductor in wet atmospheres, was investigated at temperatures 250 to 450oC and atmospheric pressure. Methane and CO were the only detectable products. It was found that the selectivity to CH4 is very significantly enhanced by proton removal from the catalyst via electrochemically controlled spillover of atomic H from the catalyst surface to the proton-conducting support. The apparent Faradaic efficiency of the process takes values up to 500 and depends strongly on the porous Ru catalyst film thickness. The results strongly suggest that the observed strong promotional effect is due to the formation and surface migration of a promoting formate anion generated via potential controlled disproportionation of formic acid adsorbed at the catalyst-proton conducting support interface. This is the first successful electrochemical promotion study of a hydrogenation reaction at temperatures as low as 250oC. There is an up to fourfold enhancement in catalytic rate of CH4 formation with concomitant 50% suppression of the CO formation rate which proceeds in a parallel route.
3

Sustainable, energy-efficient hydrogenation processes for selective chemical syntheses.

Yao, Libo 29 July 2021 (has links)
No description available.
4

Conversion of CO2 to higher alcohols

Higby, Joshua January 2020 (has links)
I rapporten framgår det en termodynamisk analys för reverse water gas shift med att sammanmata etanol för att undvika det långsammaste steget i reaktionen för att producera högre alkoholer. Ifrån ett termodynamiskt perspektiv, verkar det möjligt att utgå ifrån reverse water gas shift för att producera högre alkoholer vid 100 bar med en temperatur på 300C . Reaktionen är exotermisk, vilket gynnas av det låga temperaturer och det rekommenderas höga tryck p.g.a. en mol kontraktion. Jämviktshalterna var låga, det föreslås att ta bort vatten ifrån jämvikten.  I den matematiska modellen utgick det ifrån en kedja-reaktion för att producera högre alkoholer med reverse water gas shift i processförhållanden på 10–200 bar. I modellen utfördes en senstivty-analysis för jämvikten på tryck och vattenborttagning. Genom att ta bort vatten ifrån jämvikten låg CO2 utbytet kring 95% vid 200 bar även vid låga tryck som 10 bar. Inom CO2 hydrering till högre alkoholer är det begränsat med data och reaktionsmekanismen bakom reaktionen är inte riktigt förstådd. Experimentella försök krävs för att få en mer ökad förståelse. I modellen beskrevs CO2 hydrering och resterande reaktioner som en funktion av en sigmoid. Inom litteraturstudien kom det fram till att det fanns ingen kommersiell tillgänglig membran förtillfället för att ta bort vatten inom krävande process förhållanden. Tekniken ser dock lovande ut. / In this work, a thermodynamic analysis for CO2 hydrogenation by co-feeding ethanol to higher alcohols was performed with the HSC software package. The results suggested a high pressure and a low temperature for the reaction. However, it yielded low equilibrium compositions for the higher alcohols even at a high pressure of 100 bar at 300C . Increasing the equilibrium compositions for the higher alcohols can be done by removing water.  A mathematical model was used to analyse the rate-limiting step in a process for the production of higher alcohols from CO2.  In this process, reverse water gas shift (RWGS) reaction was used to convert CO2 to CO, subsequently, the obtained CO reacts with ethanol and hydrogen to produce higher alcohols directly. The mathematical model was developed in MATLAB to simulate how the reaction could behave by feeding CO2, H2 and ethanol at different pressures ranging from 10-200 bars. The water removal effect on the equilibrium is measured in terms of CO2   conversion by achieving 95% for removing water.  The results indicated that the process can be used to convert CO2 to higher alcohols and at a lower pressure. The limiting factor for CO2 hydrogenation is the reaction mechanism, it’s an urgent problem for the development of the catalysts. In this model it was assumed to be a logistic function. The conversion of CO2 into higher alcohols is an important problem that is required to be addressed by more experimental verifications to understand the mechanism. The literature review shows that there is no available membrane for removal of water for the process currently, due to the harsh process conditions, mainly because of the membrane stability. However, membrane technology is a promising method for separation of water/organic mixtures that can be studied further in the future.
5

Techno-economic feasibility study of a methanol plant using carbon dioxide and hydrogen

Nyari, Judit January 2018 (has links)
In 2015, more than 80% of energy consumption was based on fossil resources. Growing population especially in developing countries fuel the trend in global energy consumption. This constant increase however leads to climate change caused by anthropogenic greenhouse gas (GHG) emissions. GHG, especially CO2 mitigation is one of the top priority challenges in the EU. Amongst the solutions to mitigate future emissions, carbon capture and utilization (CCU) is gaining interest. CO2 is a valuable, abundant and renewable carbon source that can be converted into fuels and chemicals. Methanol (MeOH) is one of the chemicals that can be produced from CO2. It is considered a basic compound in chemical industry as it can be utilised in a versatility of processes. These arguments make methanol and its production from CO2 a current, intriguing topic in climate change mitigation. In this master’s thesis first the applications, production, global demand and market price of methanol were investigated. In the second part of the thesis, a methanol plant producing chemical grade methanol was simulated in Aspen Plus. The studied plants have three different annual capacities: 10 kt/a, 50 kt/a and 250 kt/a. They were compared with the option of buying the CO2 or capturing it directly from flue gases through a carbon capture (CC) unit attached to the methanol plant. The kinetic model considering both CO and CO2 as sources of carbon for methanol formation was described thoroughly, and the main considerations and parameters were introduced for the simulation. The simulation successfully achieved chemical grade methanol production, with a high overall CO2 conversion rate and close to stoichiometric raw material utilization. Heat exchanger network was optimized in Aspen Energy Analyzer which achieved a total of 75% heat duty saving. The estimated levelised cost of methanol (LCOMeOH) ranges between 1130 and 630 €/t which is significantly higher than the current listed market price for fossil methanol at 419 €/t. This high LCOMeOH is mostly due to the high production cost of hydrogen, which corresponds to 72% of LCOMeOH. It was revealed that selling the oxygen by-product from water electrolysis had the most significant effect, reducing the LCOMeOH to 475 €/t. Cost of electricity also has a significant influence on the LCOMeOH, and for a 10 €/MWh change the LCOMeOH changed by 110 €/t. Finally, the estimated LCOMeOH was least sensitive for the change in cost of CO2. When comparing owning a CC plant with purchasing CO2, it was revealed that purchasing option is only beneficial for smaller plants.
6

Development of Dendritic Mesoporous Heterogeneous Catalysts for Efficient CO2 Hydrogenation to Methanol

Alabsi, Mohnnad H. 08 1900 (has links)
In this research we investigated the generation of methanol and the utilization of CO2 using heterogeneous catalysts. Heterogeneous catalysts are frequently used in industry due to their multiple benefits, which include long-term thermal and mechanical stability, as well as reusability. Our research has demonstrated a variety of heterogeneous catalysts for sustainable methanol production and CO2 utilization, including the novel dendritic mesoporous metal oxides support. We have also designed and screened multiple active metals on the dendritic mesoporous metal oxide catalysts, modified active metal dispersion, and further reduced metal oxides to utilize silica-based catalysts, among other things. Comprehensive characterization of the final products was performed using N2 adsorption and desorption, XRD, HR-TEM, SEM, ICP-OES, XPS, H2-TPD, CO2-TPD, Raman spectroscopy, pulse-chemosorption and DRIFT, in order to determine the chemical and physical properties of the catalysts. The catalysts were found to have the following characteristics. We obtained a CO2 conversion of 25.5 % and a MeOH yield of 6.4 % after at least three cycles of usage in an avantium fixed bed reactor system with a PdCu/CZ-3 catalyst. Additionally, continuous methanol production with a higher yield (6.9 %) has been achieved using our PdZn/CZ-3 catalysts, and the best ultra-dispersed Pd nanoparticles over CZZ catalyst produces more than 12 % methanol yield with constant selectivity to methanol even after a lengthy catalytic test (more than 100 h), demonstrating their industrial viability. Additionally, our PdZn/CeTi-DMSN exhibits a high methanol production of up to 10% and better long-term stability with lower metal oxides content. The adsorption and activation of CO2 to react with the spilled over hydrogen to generate methanol has been researched for the CO2 hydrogenation and utilization reaction. Catalysts' redox, acidic, and basic characteristics all play a crucial part in this reaction and in the formation of the various products. With 2.0 percent Pd, the supported dendritic CeZrZn catalyst exhibits the highest catalytic performance (29.1% conversion and 40.6% MeOH selectivity). Comprehensive analysis revealed in this research not only identified effective catalysts with high activity for a variety of applications, but also established a link between catalytic performance and the material's nature. These discoveries may also aid the researcher in the near future in resolving global environmental problems.
7

Study of shape effect of Pd promoted Ga2O3 nanocatalysts for methanol synthesis and utilization

Zhou, Xiwen January 2013 (has links)
The area of methanol synthesis and utilization has been attracting research interests due to its positive impact on the environment and also from energy perspectives. Methanol synthesis from CO<sub>2</sub> hydrogenation not only produces methanol which is a key platform chemical and a clean fuel, but can also recycle CO<sub>2</sub> which is one of the major greenhouse gases causing global warming. As a mobile energy carrier (particularly as a hydrogen carrier), methanol is a versatile molecule which is able to generate H<sub>2</sub> via its decomposition. Catalysis plays a decisive role in the success of both methanol synthesis from CO<sub>2</sub> hydrogenation and its reverse decomposition reaction. Pd/Ga<sub>2</sub>O<sub>3</sub> binary catalyst has recently been identified as an active catalyst for the methanol synthesis reaction. In this thesis, it is reported the shape effect of Pd promoted Ga<sub>2</sub>O<sub>3</sub> for this reaction. The catalytic H<sub>2</sub> evolution from methanol photodecomposition has also been studied over these catalysts. Three shapes of Ga<sub>2</sub>O</sub>3</sub> nanomaterials (i.e. rod and plate β-Ga<sub>2</sub>O</sub>3</sub>, and particle γ-Ga<sub>2</sub>O<sub>3</sub>) have been synthesized, followed by doping with Pd metal to form corresponding Pd/Ga<sub>2</sub>O<sub>3</sub> nanocatalysts. It was found that a (002) polar Ga2O3 surface which was dominantly presented on the plate form was unstable, giving a higher degree of oxygen defects and mobile electrons in the conduction band than the other non-polar (111) and (110) surfaces of the rod form. It was shown that a significantly stronger metal support interaction was found between the (002) polar Ga<sub>2</sub>O<sub>3</sub> on the plate form and Pd, which gave higher methanol yield and selectivity. For methanol photodecomposition, it was found that, for pure Ga<sub>2</sub>O<sub>3</sub> catalysts of different shapes, the plate form with a highest degree of defects (unstable polar surface) could encourage a non-radiative catalytic recombination of electron and hole pairs upon irradiation, hence giving a highest photocatalytic activity for H<sub>2</sub> production. Once Pd was introduced onto these oxide surfaces, it was noted that there was a fast and readily electron transfer from the conduction band of Ga<sub>2</sub>O<sub>3</sub> to Pd due to the formation of a Schottky junction between the two materials. This produces metal sites for hydrogen production and further enhances the rate of the photocatalytic reaction over the radiative recombination of excitons. However, it was also found that at higher Pd content (>1%), the significantly shortened exciton lifetimes reduce the catalytic rate hence giving an overall volcanic response of activity to increasing Pd content for each shape of Ga<sub>2</sub>O<sub>3</sub>. At the higher Pd content, the plate form appeared to sustain a longer lifetime for photocatalysis compared to the other forms at the equivalent Pd loading.
8

Direct dimethyl ether synthesis from CO2/H2 / Synthèse directe de diméthyle éther à partir de CO2/H2

Jiang, Qian 28 February 2017 (has links)
DME est un carburant propre qui contribue à diminuer les émissions de gaz à effet de serre; il est aussi une molécule plate-forme pour le stockage d'énergie. L'objectif de la thèse est le développement de matériaux catalytiques bifonctionnels pour la synthèse directe de DME à partir de CO2/H2 à partir de Cu/ZnO/ZrO2 comme le catalyseur de la synthèse de méthanol à partir de CO2/H2 et Al-TUD-1 comme le catalyseur de déshydratation du méthanol en DME. Dans cette thèse, Al-TUD-1 a été étudiée comme un catalyseur de la déshydratation du méthanol en DME pour la première fois. Son activité en déshydratation du méthanol en DME augmente avec la diminution du rapport Si/Al. Les catalyseurs bifonctionnels ont été préparés par un procédé de dépôt par co-précipitation. Le SMSI a été démontré et était bénéfique pour la dispersion de cuivre métallique, la surface de cuivre métallique augmente avec le rapport Si/Al. Dans le même temps, on a observé le blocage des sites acides d'Al-TUD-1 par le cuivre. Afin d'exposer les sites acides d'Al-TUD-1, la méthode de « core-shell » a été adoptée pour préparer le catalyseur bifonctionnel. Elle aide à libérer la fonction acide en empêchant son blocage par le cuivre. Cette méthode de synthèse a été bénéfique pour la stabilité des particules de cuivre métalliques, mais des faibles conversions de CO2/H2 ont été observées en raison de l'inaccessibilité du noyau. Un autre catalyseur bifonctionnel a été préparé par une méthode de mélange physique pour comparaison. L'optimisation du catalyseur bifonctionnel Cu/ZnO/ZrO2@Al-TUD-1 pour la synthèse directe de DME à partir de CO2/H2 a permis d'éclairer les principaux paramètres affectant le contact intime de deux fonctions catalytiques: surface et dispersion du cuivre, les propriétés acide et basic, la présence d'eau et l'accessibilité des sites actifs pour les réactifs. / DME is a clean fuel that helps to diminish the emissions of green house gases; it is as well a platform molecule for the energy storage. The objective of the thesis is the development of bifunctional catalytic materials for the direct DME synthesis from CO2/H2 based on Cu/ZnO/ZrO2 as the methanol synthesis from CO2/H2 catalyst and Al-TUD-1 as the methanol dehydration to DME catalyst. In this thesis, Al-TUD-1 was investigated as the methanol dehydration to DME catalyst for the first time. The methanol dehydration to DME performance increases with the decrease of Si/Al ratio. The bifunctional catalysts were prepared by co-precipitation deposition method. The SMSI was demonstrated and was beneficial for the metallic copper dispersion, the metallic copper surface area increases with the Si/Al ratio. In the same time the blockage of acid sites of Al-TUD-1 by copper was observed. In order to expose the acid sites of Al-TUD-1, the core shell method was adopted to prepare the bifunctional catalyst. It helps to free the acid function preventing its blockage by copper. This method of synthesis was beneficial for the stability of metallic copper particles, but performed low conversions of CO2/H2 due to the inaccessibility of the core. Another bifunctional catalyst was prepared by physically mixing method for comparison. The optimization of the bifunctional Cu/ZnO/ZrO2@Al-TUD-1 catalyst for the direct DME synthesis from CO2/H2 allowed enlightening the main parameters that affect the intimate contact of two catalytic functions: copper surface area and dispersion, acid and basic properties, water presence and the accessibility of the active sites for the reactants.
9

CO2-Hydrierung in Aminen

Frölich, Stefan 23 February 2021 (has links)
Die Verringerung von CO2-Emissionen und die Schaffung eines Kohlenstoffkreislaufs sind Gegenstand vieler Forschungsarbeiten. Mittels Absorption wird CO2 in einem Lösungsmittel (vorrangig Alkoholamine) aus verschiedenen Gasmischungen abgetrennt und anschließend zu Wertstoffen umgesetzt. In der vorliegenden Arbeit war ein kombiniertes Verfahren aus CO2-Absorption und direktem Umsatz von CO2 zu Methanol im Amin zu untersuchen. Die Einsparung des Desorptionsschritts und die Möglichkeit zur Reduzierung der Reaktionstemperatur des exothermen Hydrierprozesses sind wesentliche Vorteile dieser Verfahrensweise. Um dieses Ziel zu erreichen, wurde die Performance verschiedener Amine untersucht und die Reaktionsparameter optimiert. Zur Verhinderung auftretender Nebenreaktionen fällt der Suche nach einem neuartigen Feststoffkatalysator besondere Bedeutung zu. Hierbei konnte ein Katalysatorsystem identifiziert werden, mit dessen Einsatz eine deutlich höhere Methanolausbeute als mit dem Standardkatalysator sowie eine Einschränkung der Nebenreaktionen erreicht wurde.
10

Aktivitätsuntersuchungen und Charakterisierung von heterogenen Katalysatoren zur CO2-Hydrierung

Völs, Pit 29 August 2022 (has links)
Im Rahmen dieser Dissertation wurden Hydrotalcit-basierte Nickelkatalysatoren zur CO2-Methanisierung synthetisiert, charakterisiert und katalytisch untersucht. Dabei konnten durch mehrere Ansätze deutliche Verbesserungen der katalytischen Aktivität erzielt werden. Einen wesentlichen Effekt zeigte dabei die Kombination der üblicherweise separat durchgeführten Präparationsschritte der Calcination und der Reduktion. Dadurch ließ sich die notwendige Reduktionstemperatur senken, was zum Erhalt einer größeren Katalysatoroberfläche führte. Zusätzlich wurde eine Vielzahl von Promotoren in Hydrotalcit-basierten Nickelkatalysatoren systematisch und vergleichend untersucht. Eine solche Untersuchung lässt sich in der Literatur bisher nicht finden. Dabei kristallisierte sich insbesondere Mangan als vielversprechender Promotor heraus. Spektroskopische Untersuchungen zum Einfluss des Mangans zeigten, dass Mangan die Bindungsstärke des Kohlenstoffdioxids am Katalysator erhöht. Durch Variation des Mangangehaltes ließ sich entsprechend die Bindungsstärke einstellen und somit die Katalysatoraktivität optimieren.

Page generated in 0.1126 seconds