• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 15
  • 13
  • 2
  • 1
  • Tagged with
  • 61
  • 61
  • 17
  • 16
  • 13
  • 12
  • 12
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flow induced phase inversion emulsification

Kazeem, Akintunde January 1999 (has links)
No description available.
2

Den lilla kemifabriken : En studie för att undersöka om nyttan av skogsrester kan ökas i norra Sveriges inland

Häggkvist, Sofie January 2016 (has links)
The background of this work is to suggest ways to take care of branches and tops of trees that today are left out in the north of Sweden after logging because it has to low value to be worth transporting. A solution to this is to place small chemical factories in the sparsely populated areas in the inland of Norrland that can take care of the forest residues and break it into valuable chemicals directly in the forest an then transport it to a market. The aim of this work was to find out if it´s a good idea to invest in these small chemical factories in the north of Sweden. This study has been carried out using literature study and interviews of key people. The largest part of the result comes from the interviews. The results of this study show that the small chemical factory is a good idea. Forest residues contains many valuable substances that should be greater used today. The results section of the report describes various factor that are crucial for the small chemical factory and these are: the products that can be produced, what technology that is suitable, if there is an market, who should be taking care of the factory and how the inland endurance will be affected. The conclusions that can be drawn from the study is that the small chemical factory should produce high-grade-sary chemicals directed at the chemical market. It may also be noted that there is existing technology that can be used in the factories, what has been done in the laboratories today can be implemented in the factory. The market will obviously depend on which product that will be produces, but finding a suitable market should not be impossible. The inland endurance will be positively impacted, among other things, the social endurance is enhances when these small chemical factories creates job opportunities in the inland and it can lead to decreasing the emigration.
3

Química em fluxo como alternativa ao processo batelada na reação da 2,4-Tiazolidinadiona com p-Metoxibenzaldeído / Flow chemistry as an alternative to the batch process in the reaction of 2,4-thiazolidinedione with p-methoxybenzaldehyde

Vieira, Rodrigo de Oliveira 28 June 2018 (has links)
A utilização de microrreatores nas indústrias químico-farmacêuticas possibilita uma série de vantagens devido a seu tamanho reduzido comparado aos reatores batelada. Neste trabalho foi feita a transposição da reação da 2,4-tiazolidinadiona com p-metoxibenzaldeído do batelada para o processo em fluxo em microrreator capilar. Adicionalmente, são apresentados estudos de solventes com metanol, etanol e n-propanol, que são mais utilizados por essas indústrias. O etanol apresentou os melhores resultados em termos de rendimento da reação. No processo batelada foi obtido um rendimento de 100% em 480 min utilizando piperidina (0,053 M) como base e concentração equimolar dos reagentes (0,066 M), enquanto que para a reação com pirrolidina o rendimento foi de 100% em 50 min. Com a transposição para o processo em fluxo, o etanol também foi o melhor solvente, alcançando 100% de rendimento (T =140°C, tempo médio de residência: 12 min, base pirrolidina). Também foi feito um estudo de bases que promovessem a reação, sendo estas a morfolina, feniletilamina, propargilamina, piperidina, diaminoetano, piperazina e pirrolidina. No processo em fluxo, a pirrolidina (0,033 M) teve os melhores resultados em termos de conversão, rendimento e velocidade inicial para todas as temperaturas (65, 78, 98, 120, 140 e 160°C) e tempos médios de residência (2, 4, 8, 16, 20, 30, 50 e 70 min) estudados nos três solventes mencionados. O mesmo foi observado no processo batelada, com a qual foi obtido conversão e rendimentos máximos para cada solvente em tempos menores do que na reação com a piperidina. Foram também estimados quantos microrreatores associados em paralelo são necessários para equivaler à produção no processo batelada e constatou-se que um único microrreator produz mais que 1 reator em batelada operando por 8h com o mesmo meio reacional, ao se utilizar etanol (tempo médio de residência 2 min, T =140°C) mostrando assim, que o microrreator pode ser utilizado como alternativa de processo para essa síntese e que a Tecnologia de Microrreatores (TMR) pode ser melhor difundida na indústria. / The use of microreactors in the chemical-pharmaceutical industries offers several advantages due to their reduced size compared to batch reactors. In this work, the reaction of the 2,4-thiazolidinedione with p-methoxybenzaldehyde from the batch was transposed to the flow process in a capillary microreactor. In addition, solvent studies are presented with methanol, ethanol and n-propanol, which are most used by these industries. Ethanol had the best results in terms of reaction yield. In the batch process a yield of 100% in 480 min was obtained using piperidine (0.053 M) as base and equimolar concentration of the reactants (0.066 M), while for the reaction with pyrrolidine the yield was 100% in 50 min. With the transposition to the flow process, ethanol was also the best solvent, achieving 100% yield (T = 140°C, mean residence time: 12 min, pyrrolidine base). A base study was also carried out to promote the reaction, being morpholine, phenylethylamine, propargylamine, piperidine, diaminoethane, piperazine and pyrrolidine. In the flow-through process, pyrrolidine (0.033 M) had the best results in terms of conversion, yield and initial velocity at all temperatures (65, 78, 98, 120, 140 and 160°C) and average residence times (2 , 4, 8, 16, 20, 30, 50 and 70 min) studied in the three solvents mentioned. The same was observed in the batch process, with which conversion and maximum yields were obtained for each solvent at times shorter than in the reaction with piperidine. It was also estimated how many microreactors associated in parallel are required to match the production in the batch process and it was found that a single micro-reactor produces more than 1 batch reactor operating for 8h with the same reaction medium, when using ethanol (mean residence time 2 min, T = 140°C) thus showing that the micro-reactor can be used as a process alternative for this synthesis and that Microreactor Technology (TMR) may be better disseminated in the industry.
4

Química em fluxo como alternativa ao processo batelada na reação da 2,4-Tiazolidinadiona com p-Metoxibenzaldeído / Flow chemistry as an alternative to the batch process in the reaction of 2,4-thiazolidinedione with p-methoxybenzaldehyde

Rodrigo de Oliveira Vieira 28 June 2018 (has links)
A utilização de microrreatores nas indústrias químico-farmacêuticas possibilita uma série de vantagens devido a seu tamanho reduzido comparado aos reatores batelada. Neste trabalho foi feita a transposição da reação da 2,4-tiazolidinadiona com p-metoxibenzaldeído do batelada para o processo em fluxo em microrreator capilar. Adicionalmente, são apresentados estudos de solventes com metanol, etanol e n-propanol, que são mais utilizados por essas indústrias. O etanol apresentou os melhores resultados em termos de rendimento da reação. No processo batelada foi obtido um rendimento de 100% em 480 min utilizando piperidina (0,053 M) como base e concentração equimolar dos reagentes (0,066 M), enquanto que para a reação com pirrolidina o rendimento foi de 100% em 50 min. Com a transposição para o processo em fluxo, o etanol também foi o melhor solvente, alcançando 100% de rendimento (T =140°C, tempo médio de residência: 12 min, base pirrolidina). Também foi feito um estudo de bases que promovessem a reação, sendo estas a morfolina, feniletilamina, propargilamina, piperidina, diaminoetano, piperazina e pirrolidina. No processo em fluxo, a pirrolidina (0,033 M) teve os melhores resultados em termos de conversão, rendimento e velocidade inicial para todas as temperaturas (65, 78, 98, 120, 140 e 160°C) e tempos médios de residência (2, 4, 8, 16, 20, 30, 50 e 70 min) estudados nos três solventes mencionados. O mesmo foi observado no processo batelada, com a qual foi obtido conversão e rendimentos máximos para cada solvente em tempos menores do que na reação com a piperidina. Foram também estimados quantos microrreatores associados em paralelo são necessários para equivaler à produção no processo batelada e constatou-se que um único microrreator produz mais que 1 reator em batelada operando por 8h com o mesmo meio reacional, ao se utilizar etanol (tempo médio de residência 2 min, T =140°C) mostrando assim, que o microrreator pode ser utilizado como alternativa de processo para essa síntese e que a Tecnologia de Microrreatores (TMR) pode ser melhor difundida na indústria. / The use of microreactors in the chemical-pharmaceutical industries offers several advantages due to their reduced size compared to batch reactors. In this work, the reaction of the 2,4-thiazolidinedione with p-methoxybenzaldehyde from the batch was transposed to the flow process in a capillary microreactor. In addition, solvent studies are presented with methanol, ethanol and n-propanol, which are most used by these industries. Ethanol had the best results in terms of reaction yield. In the batch process a yield of 100% in 480 min was obtained using piperidine (0.053 M) as base and equimolar concentration of the reactants (0.066 M), while for the reaction with pyrrolidine the yield was 100% in 50 min. With the transposition to the flow process, ethanol was also the best solvent, achieving 100% yield (T = 140°C, mean residence time: 12 min, pyrrolidine base). A base study was also carried out to promote the reaction, being morpholine, phenylethylamine, propargylamine, piperidine, diaminoethane, piperazine and pyrrolidine. In the flow-through process, pyrrolidine (0.033 M) had the best results in terms of conversion, yield and initial velocity at all temperatures (65, 78, 98, 120, 140 and 160°C) and average residence times (2 , 4, 8, 16, 20, 30, 50 and 70 min) studied in the three solvents mentioned. The same was observed in the batch process, with which conversion and maximum yields were obtained for each solvent at times shorter than in the reaction with piperidine. It was also estimated how many microreactors associated in parallel are required to match the production in the batch process and it was found that a single micro-reactor produces more than 1 batch reactor operating for 8h with the same reaction medium, when using ethanol (mean residence time 2 min, T = 140°C) thus showing that the micro-reactor can be used as a process alternative for this synthesis and that Microreactor Technology (TMR) may be better disseminated in the industry.
5

Microrreator na síntese de derivados da tiazolidina-2,4-diona com aldeídos arílicoss nitrados / Microreactor in synthesis of thiazolidine-2,4-dione derivatives with nitrite Aryl aldehydes

Edson Nascimento dos Santos Junior 23 November 2018 (has links)
A utilização de microrreatores nas indústrias químico-farmacêuticas possibilita uma série de vantagens, no entanto essa tecnologia ainda é pouco difundida na indústria brasileira que historicamente utiliza reatores batelada. Neste trabalho são apresentados os resultados dos estudos da aplicação de microrreatores na síntese de compostos derivados da tiazolidina-2,4-diona (TZD) que podem ser utilizados na síntese de moléculas com atividade biológica. Foi realizada a transposição do processo batelada para o processo em fluxo em microrreator. Adicionalmente, foi realizada a determinação das melhores condições operacionais das sínteses estudadas. Os solventes metanol, etanol e n-propanol foram testados, sendo que no metanol foram obtidos os maiores rendimentos, além disso foi verificada a influência do tempo de reação no processo batelada, temperatura, tempo médio de residência no processo em fluxo no microrreator, concentração da base promotora e posição do substituinte NO2 no anel do aldeído, os melhores resultados foram obtidos com a base pirrolidina e o aldeído 3-nitrobenzaldeído. Os processos em batelada e em microrreator foram comparados em termos de conversão, rendimento, produção e produtividade e ainda pela determinação do número de microrreatores necessários para se atingir a mesma produção do reator batelada para cada uma das condições estudadas. Foi realizado um estudo da cinética das reações para determinação da energia de ativação e grandezas termodinâmicas que auxiliou na compressão dos resultados obtidos. Dentre as vantagens do microrreator destacou-se a redução dos tempos de reação, devido à eliminação dos efeitos da mistura ineficiente, redução da geração de resíduos, aumento da transferência de massa e de calor, facilidade de controle da pressão e temperatura, que permitiu atingir rendimentos maiores do que os obtidos em batelada. A indústria químico-farmacêutica é a maior beneficiária desta tecnologia, pois os microrreatores podem diminuir em anos o tempo para produção comercial de um novo fármaco e podem ser unidades industriais compactas, reduzindo assim, o custo para produção de novos fármacos. Com isso, é evidente a necessidade de que a Tecnologia de Microrreatores (TMR) seja melhor difundida na indústria químico-farmacêutica e ficam comprovadas as vantagens de sua aplicação. / The Microreactor Technology (TMR) in the chemical-pharmaceutical industries offers a number of advantages, however, this technology is still not widespread in the brazilian industry that historically uses batch reactors. In this work area presented the results of the application of microreactors in the synthesis of compounds derived from thiazolidine-2,4-dione (TZD) that can be used in the synthesis of molecules with biological activity. The batch process was transposed to the flow process in a microreactor. In addition, the best operating conditions of the syntheses studied were determined. The methanol, ethanol and n-propanol solvents were tested, and the highest yields were obtained in methanol; in addition, the influence of the time of reaction on the batch process, temperature, mean residence time in the flow process in the microreactor, concentration of the promoter base and position of the NO2 substituent on the aldehyde ring. The best results were obtained with pyrrolidine, as promoter base, and the 3-nitrobenzaldehyde aldehyde. The batch and microreactor processes were compared in terms of conversion, yield, production, productivity and also the number of microreactors needed to reach the same batch reactor production for each of the studied conditions. A study of the kinetics of the reactions was carried out to determine the activation energy and thermodynamic parameters that aided in the comprehension of the results. Among the advantages of the microreactor, the most relevant were the reduction of time of reaction due to the elimination of inefficient mixing, reduction of waste generation, increase in mass and heat transfer, ease of pressure and temperature control, yields higher than those obtained in the batch process. The chemical-pharmaceutical industry is the main beneficiary of this technology because microreactors can lessen the time to produce commercially a new drug in years and can be compact industrial units, thus reducing the cost of producing new drugs. Thus, the need for Microreactor Technology to be better disseminated in the chemical-pharmaceutical industry is evident and the advantages of its application are proven.
6

Microrreator na síntese de derivados da tiazolidina-2,4-diona com aldeídos arílicoss nitrados / Microreactor in synthesis of thiazolidine-2,4-dione derivatives with nitrite Aryl aldehydes

Santos Junior, Edson Nascimento dos 23 November 2018 (has links)
A utilização de microrreatores nas indústrias químico-farmacêuticas possibilita uma série de vantagens, no entanto essa tecnologia ainda é pouco difundida na indústria brasileira que historicamente utiliza reatores batelada. Neste trabalho são apresentados os resultados dos estudos da aplicação de microrreatores na síntese de compostos derivados da tiazolidina-2,4-diona (TZD) que podem ser utilizados na síntese de moléculas com atividade biológica. Foi realizada a transposição do processo batelada para o processo em fluxo em microrreator. Adicionalmente, foi realizada a determinação das melhores condições operacionais das sínteses estudadas. Os solventes metanol, etanol e n-propanol foram testados, sendo que no metanol foram obtidos os maiores rendimentos, além disso foi verificada a influência do tempo de reação no processo batelada, temperatura, tempo médio de residência no processo em fluxo no microrreator, concentração da base promotora e posição do substituinte NO2 no anel do aldeído, os melhores resultados foram obtidos com a base pirrolidina e o aldeído 3-nitrobenzaldeído. Os processos em batelada e em microrreator foram comparados em termos de conversão, rendimento, produção e produtividade e ainda pela determinação do número de microrreatores necessários para se atingir a mesma produção do reator batelada para cada uma das condições estudadas. Foi realizado um estudo da cinética das reações para determinação da energia de ativação e grandezas termodinâmicas que auxiliou na compressão dos resultados obtidos. Dentre as vantagens do microrreator destacou-se a redução dos tempos de reação, devido à eliminação dos efeitos da mistura ineficiente, redução da geração de resíduos, aumento da transferência de massa e de calor, facilidade de controle da pressão e temperatura, que permitiu atingir rendimentos maiores do que os obtidos em batelada. A indústria químico-farmacêutica é a maior beneficiária desta tecnologia, pois os microrreatores podem diminuir em anos o tempo para produção comercial de um novo fármaco e podem ser unidades industriais compactas, reduzindo assim, o custo para produção de novos fármacos. Com isso, é evidente a necessidade de que a Tecnologia de Microrreatores (TMR) seja melhor difundida na indústria químico-farmacêutica e ficam comprovadas as vantagens de sua aplicação. / The Microreactor Technology (TMR) in the chemical-pharmaceutical industries offers a number of advantages, however, this technology is still not widespread in the brazilian industry that historically uses batch reactors. In this work area presented the results of the application of microreactors in the synthesis of compounds derived from thiazolidine-2,4-dione (TZD) that can be used in the synthesis of molecules with biological activity. The batch process was transposed to the flow process in a microreactor. In addition, the best operating conditions of the syntheses studied were determined. The methanol, ethanol and n-propanol solvents were tested, and the highest yields were obtained in methanol; in addition, the influence of the time of reaction on the batch process, temperature, mean residence time in the flow process in the microreactor, concentration of the promoter base and position of the NO2 substituent on the aldehyde ring. The best results were obtained with pyrrolidine, as promoter base, and the 3-nitrobenzaldehyde aldehyde. The batch and microreactor processes were compared in terms of conversion, yield, production, productivity and also the number of microreactors needed to reach the same batch reactor production for each of the studied conditions. A study of the kinetics of the reactions was carried out to determine the activation energy and thermodynamic parameters that aided in the comprehension of the results. Among the advantages of the microreactor, the most relevant were the reduction of time of reaction due to the elimination of inefficient mixing, reduction of waste generation, increase in mass and heat transfer, ease of pressure and temperature control, yields higher than those obtained in the batch process. The chemical-pharmaceutical industry is the main beneficiary of this technology because microreactors can lessen the time to produce commercially a new drug in years and can be compact industrial units, thus reducing the cost of producing new drugs. Thus, the need for Microreactor Technology to be better disseminated in the chemical-pharmaceutical industry is evident and the advantages of its application are proven.
7

A novel approach to process debottlenecking and intensification: integrated techniques for targeting and design

Al Thubaiti, Musaed Muhammad 15 May 2009 (has links)
Continuous process improvement is a critical element in maintaining competitiveness of the process industries. An important category of process improvement is process debottlenecking which is associated with plants that have sold-out products while making a profit. In such cases, market conditions and the prospects for enhancing revenues and profits drive the process to increase production. To overcome the limitation of conventional sequential unit-by-unit debottlenecking approach, this work introduces a new approach. This new approach is simultaneous in nature and is based on posing the debottlenecking task as a process integration task which links all the design and operating degrees of freedom and exploits synergies among the units and streams to attain maximum debottlenecking. Additionally, this new approach considers heat integration of the process while simultaneously performing the debottlenecking. Because of the general nonconvexity of the process model, a rigorous interval-based bounding technique is used to determine the target for maximum extent of debottlenecking aside from the problem nonconvexity. Inclusion isotonicity using interval arithmetic is used to determine a global bound for the maximum extent of process debottlenecking. Focus is given to no/low cost debottlenecking such as modest changes in design and operating degrees of freedom. Two case studies are solved to illustrate the applicability of the new approach and its superior results compared to the conventional sequential approach. Intensification, to debottleneck a process and to improve process safety is also addressed in this work. A new definition and classification of intensification is introduced. This classification distinguishes between two types of intensification: single unit and whole process. Process integration and optimization techniques are used to develop a systematic procedure for process intensification. Focus is given to the interaction among the process units while enhancing the intensification of the process. A case study is solved to illustrate the usefulness of the developed approach.
8

Intensification de procédés par chauffage micro-ondes pour la chimie verte / Microwave process intensification applied to green chemistry

Benamara, Nassima 07 December 2017 (has links)
L'objet de cette thèse est la conception, le développement et la caractérisation d'un réacteur micro-ondes en continu pour mener tout type de réactions chimiques à températures élevées de manière fiable et dans des conditions optimisées. Le développement de ce réacteur a tout d'abord nécessité la caractérisation diélectrique et magnétique des matériaux et milieux utilisés. La simulation numérique a ensuite été utilisée afin de prédire les distributions de champ et température au sein des matériaux. L'interaction entre les ondes et les différents milieux a été finement étudiée. Elle démontre non seulement l'influence de la nature diélectrique du milieu réactionnel et du ratio volumique du fluide dans le réacteur sur le chauffage micro-ondes, mais aussi celle des dimensions de l'applicateur et de la disposition du réacteur dans ce dernier. L'hydrodynamique a également été introduite dans la simulation permettant de prédire les profils de température dans le réacteur en fonctionnement continu. L'ensemble des résultats numériques a fait l'objet de validations expérimentales qui ont aussi permis d'affiner le modèle thermique de l'ensemble conçu. Au final, une réaction de diestérification a été mise en œuvre et démontre l'efficacité thermique et chimique du réacteur. Au-delà de ce prototype, cette thèse établit un schéma général de conception d'un procédé chimique continu sous micro-ondes en ordonnant les étapes, respectant les règles clés de l'électromagnétisme, optimisant la propagation des ondes et les performances thermiques du système. / The aim of this thesis is the development and characterisation of an intensified continuous microwave reactor for green chemistry. The development of this reactor required, at first, the characterisation of the dielectric and magnetic properties of the used materials. A numerical simulation was then used to predict the field and temperature profiles within the materials. The influence of different parameters on the microwave heating was also studied, such as the influence of the dielectric nature of the reaction medium, the ratio of the fluid in the reactor, the arrangement of the reactor in the applicator and the size and shape of the latter. Hydrodynamics were also taken into account in the simulation to predict the temperature profiles in the reactor. All the numerical results were validated experimentally. Experimental results also made it possible to refine the thermal model of the reactor. In the end, an esterification reaction was carried out and it proved the thermal and chemical efficiency of the designed reactor. Beyond this prototype, this thesis establishes a general scheme for the design of a continuous chemical process under microwaves whilst following the key rules of electromagnetism and optimising the wave propagation and the thermal performance of the reactor.
9

Process Intensification Enabling Direct Compression for Pharmaceutical Manufacturing: From Spherical Agglomeration to Precise Control of Co-Agglomeration

Kanjakha Pal (8065976) 03 December 2019 (has links)
Spherical agglomeration (SA) is a novel process intensification strategy for particulate manufacturing. In the context of pharmaceutical manufacturing, it has the potential to reduce the number of unit operations in downstream processing from seven to three, which significantly reduces the manufacturing cost. However, SA process development for a new API in the drug pipeline is still a challenging exercise, which has impeded its practical implementation. The major bottleneck lies in the lack of fundamental understanding of the mechanistic principles underlying agglomeration of primary crystals, which can enable rational process design. In addition, most SA processes reported in literature focus on only the API, which does not eliminate the blending and wet granulation unit operations. The major purposes of this thesis are to (i) develop a first principle mathematical framework which can identify the fundamental agglomeration mechanism (ii) develop a model based online optimization framework, which can control the process, even in the presence of model parametric uncertainties (iii) develop a rational framework for co-agglomerating APIs and excipients, guided by process analytical technology tools. It is believed that the novel technology developed in this thesis will lay the groundwork for fast and robust process development of co-agglomerating APIs and excipients in the future, thereby enabling one-step direct compression. The large-scale development and deployment of this technology will significantly reduce the time to market and the manufacturing costs for new APIs, thereby ensuring higher accessibility of life-saving drugs.
10

Design of Integrated Gasifier and Steam Methane Reformer

Ghouse, Jaffer H. January 2016 (has links)
While the quest of the human civilization continues towards a more sustainable energy resource, current energy conversion technologies need to be improved such that the rate of environmental impact that has occurred due to the rapid industrialization since the 20th century is mitigated. This search has motivated research into new energy conversion technologies that aim to reduce the environmental impact by either improving the efficiencies of existing technologies, developing new technologies with zero emissions or by improving reliability and reducing the cost of renewable energy. Process intensification through process integration is one of the areas of active research that improves the system efficiency by exploiting the synergies that exist between different processes. This thesis considers the design and operational feasibility of heat integrating two conventional industrial processes – gasification and steam reforming of methane for application in polygeneration. To this end, complex mathematical models that describe the integrated system are developed to study different design prospects and to determine if the device can be safely operated in a plant producing electricity, liquid fuels and hydrogen. The designs proposed in this thesis show that significant methane conversion comparable to industrial reformers can be achieved while providing the required cooling duty to the gasifier. The proposed integrated system produces hydrogen rich reformer synthesis gas (hydrogen and carbon monoxide) that can be blended with the hydrogen lean coal synthesis gas providing flexibility to change the molar H2/CO ratio necessary for different downstream processes in a polygeneration plant. Moreover, the results show that the integration helps improve plant carbon efficiency and reduce CO2 emissions. The major contribution of this thesis is the development of designs based on representative mathematical models that are safe to operate for producing several chemicals in polygeneration plants. / Dissertation / Doctor of Philosophy (PhD)

Page generated in 0.1596 seconds