• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of Integrated Gasifier and Steam Methane Reformer

Ghouse, Jaffer H. January 2016 (has links)
While the quest of the human civilization continues towards a more sustainable energy resource, current energy conversion technologies need to be improved such that the rate of environmental impact that has occurred due to the rapid industrialization since the 20th century is mitigated. This search has motivated research into new energy conversion technologies that aim to reduce the environmental impact by either improving the efficiencies of existing technologies, developing new technologies with zero emissions or by improving reliability and reducing the cost of renewable energy. Process intensification through process integration is one of the areas of active research that improves the system efficiency by exploiting the synergies that exist between different processes. This thesis considers the design and operational feasibility of heat integrating two conventional industrial processes – gasification and steam reforming of methane for application in polygeneration. To this end, complex mathematical models that describe the integrated system are developed to study different design prospects and to determine if the device can be safely operated in a plant producing electricity, liquid fuels and hydrogen. The designs proposed in this thesis show that significant methane conversion comparable to industrial reformers can be achieved while providing the required cooling duty to the gasifier. The proposed integrated system produces hydrogen rich reformer synthesis gas (hydrogen and carbon monoxide) that can be blended with the hydrogen lean coal synthesis gas providing flexibility to change the molar H2/CO ratio necessary for different downstream processes in a polygeneration plant. Moreover, the results show that the integration helps improve plant carbon efficiency and reduce CO2 emissions. The major contribution of this thesis is the development of designs based on representative mathematical models that are safe to operate for producing several chemicals in polygeneration plants. / Dissertation / Doctor of Philosophy (PhD)
2

Opportunities and Challenges of LowCarbon Hydrogen via Metallic Membrane Reactors

Kian, Kourosh 11 May 2020 (has links)
The industrial sector is one of the largest emitters of CO2 and a great potential for retrofitting with carbon capture systems. In this work the performance of a palladium-based membrane reactor at 400°C and operating pressures between 100-400 kPa have been studied in terms of methane conversion, hydrogen recovery, hydrogen purity, and CO2 emission. It is found that the MR has the potential to produce high purity hydrogen while the methane conversion values could be as high as 40% at very moderate operating conditions and without using any sweep gases. The H2 permeation and separation properties of two Pd-based composite membranes were evaluated and compared at 400 °C and at a pressure range of 150 kPa to 600 kPa. One membrane was characterized by an approximately 8 μm-thick palladium (Pd)-gold (Au) layer deposited on an asymmetric microporous Al2O3 substrate; the other membrane consisted of an approximately 11 μm-thick pure palladium layer deposited on a yttria-stabilized zirconia (YSZ) support. At 400 °C and with a trans-membrane pressure of 50 kPa, the membranes showed a H2 permeance of 8.42 × 10−4 mol/m2·s·Pa0.5 and 2.54 × 10−5 mol/m2·s·Pa0.7 for Pd-Au and Pd membranes, respectively. Pd-Au membrane showed infinite ideal selectivity to H2 with respect to He and Ar at 400 °C and a trans-membrane pressure of 50 kPa, while the ideal selectivities for the Pd membrane under the same operating conditions were much lower. Furthermore, the permeation tests for ternary and quaternary mixtures of H2, CO, CO2, CH4, and H2O were conducted on the Pd/YSZ membrane. The H2 permeating flux decreased at the conclusion of the permeation tests for all mixtures. This decline however, was not permanent, i.e., H2 permeation was restored to its initial value after treating the membrane with H2 for a maximum of 7 h. The effects of gas hourly space velocity (GHSV) and the steam-to-carbon (S/C) ratio on H2 permeation were also investigated using simulated steam methane reforming mixtures. It was found that H2 permeation is highest at the greatest GHSV, due to a decline in the concentration polarization effect. Variations in S/C ratio however, showed no significant effect on the H2 permeation. The permeation characteristics for the Pd/YSZ membrane were also investigated at temperatures ranging from 350 to 400 °C. The pre-exponential factor and apparent activation energy were found to be 5.66 × 10−4 mol/m2·s·Pa0.7 and 12.8 kJ/mol, respectively. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analyses were performed on both pristine and used membranes, and no strong evidence of the formation of Pd-O or any other undesirable phases was observed. The permeation tests with pure hydrogen and inert gases indicate that the MR is highly selective toward hydrogen and the produced hydrogen is an ultrahigh purity grade. The carbon capture experiments in the work consists of dehydrating the retentate stream and redirecting it to a 13X packed bed before analyzing the stream via mass spectrometry. The carbon capture studies reveal that approximately 5.96 mmole CO2 (or 262.25 mg of CO2)can be captured per g of 13X. In this study, SEM-EDS, and XRD technics have been used to characterize the crystallography and morphology of the membrane surface. These material characterization techniques reveal that the surface of the membrane has gone through significant oxidation during the steam methane reforming reaction, although this oxidation is only limited to the few nanometers of depth through the surface of the palladium membrane.
3

Mathematical Modelling of an Industrial Steam Methane Reformer

Latham, Dean 08 January 2009 (has links)
A mathematical model of a steam-methane reformer (SMR) was developed for use in process performance simulations and on-line monitoring of tube-wall temperatures. The model calculates temperature profiles for the outer-tube wall, inner-tube wall, furnace gas and process gas. Reformer performance ratios and composition profiles are also computed. The model inputs are the reformer inlet-stream conditions, the geometry and material properties of the furnace and catalyst-bed. The model divides the furnace and process sides of the reformer into zones of uniform temperature and composition. Radiative-heat transfer on the furnace side is modeled using the Hottel Zone method. Energy and material balances are performed on the zones to produce non-linear algebraic equations, which are solved using the Newton-Raphson method with a numerical Jacobian. Model parameters were ranked from most-estimable to least estimable using a sensitivity-based estimability analysis tool, and model outputs were fitted to limited data from an industrial SMR. The process-gas outlet temperatures were matched within 4 ºC, the upper and lower peep-hole temperatures within 12 ºC and the furnace-gas outlet temperature within 4 ºC. The process-gas outlet pressure, composition and flow rate are also accurately matched by the model. The values of the parameter estimates are physically realistic. The model developed in this thesis has the capacity to be developed into more specialized versions. Some suggestions for more specialized models include modeling of separate classes of tubes that are in different radiative environments, and detailed modeling of burner configurations, furnace-gas flow patterns and combustion heat-release patterns. / Thesis (Master, Chemical Engineering) -- Queen's University, 2009-01-06 21:50:35.04
4

Intensification du procédé de vaporeformage du gaz naturel : fonctionnalisation catalytique d'échangeurs-réacteurs / Steam methane reforming process intensification : catalyst functionalization of exchanger-reactor

Croissant, Baptiste 21 December 2018 (has links)
Le vaporeformage du méthane (SMR) est encore aujourd’hui la méthode industrielle de synthèse d’hydrogène la plus rentable. L’efficacité globale de ce procédé est cependant limitée par les contraintes techniques intrinsèques au design des unités de production actuelles. Dans un souci constant d’intensification des procédés, des échangeurs-réacteurs intensifiés sont à l’étude chez AIR LIQUIDE. Les progrès dans le domaine des techniques de fabrication additive métallique ont permis d’envisager des unités de production sous formes d’équipements compacts, présentant des canaux millimétriques, qui optimisent les transferts de masse et de chaleur. Pour atteindre des taux de conversion élevés, et ce malgré des temps de contacts réduits, ces structures obligent à développer de nouvelles architectures de catalyseurs. Des phases actives supportées stables et très actives pour la réaction SMR à base de rhodium ont été préparés à partir de supports MgAl2O4 commerciaux. L’étude de l’impact du taux de métal noble, des propriétés des supports, ainsi que des traitements thermiques a permis de comprendre les interactions existantes entre les phases actives et les supports oxydes. Les propriétés catalytiques en condition de reformage ont pu être reliées aux morphologies des phases actives synthétisées. La fonctionnalisation des canaux des échangeurs-réacteurs millistructurés par une méthode proche du dip-coating est détaillée dans cette thèse. Des formulations de suspensions adaptées, aux comportements rhéologiques maîtrisés, ont permis avec des protocoles de dépôt adéquats, de rendre fonctionnel des échangeurs-réacteurs de taille semi-industrielle qui ont été testés avec succès durant plusieurs centaines d’heures. / The Steam Methane Reforming (SMR) process is still today the most profitable industrial synthesis process of hydrogen. The efficiency of this technique is however facing intrinsically technical limitations due to the design of production units. In order to intensify the global process, exchangers-reactors are under investigation at AIR LIQUIDE. Thanks to recent progresses in metallic additive manufacturing, new compact equipment can be designed. Structures made of millimetric channels allow optimizing heat and mass transfers. New catalyst architecture design needs to be developed to reach high conversion rates despite extreme low contact times in such devices. Stable and highly active rhodium-based catalysts supported on spinel MgAl2O4 have been prepared in this aim. The impact of rhodium loading, properties of supports, as well as thermal treatments have allowed us understanding active phase and support interactions. Catalyst properties under SMR conditions have been linked to active phase morphologies. Functionalization of exchangers-reactors channels through a dip-coating technique has been detailed in this thesis. The formulations of suspensions of washcoat have been optimized thanks to rheological behavior characterizations to achieve very low viscosities. A procedure to deposit homogeneous coatings with controlled thicknesses on the internal channels has been validated on a pilot structure. These new intensified exchangers-reactors have been successfully tested for methane conversion during several hundred of hours.
5

Synthesis, characterization and industrial applicability of combined sorbent-catalyst materials for sorption enhanced steam methane reforming / Synthèse, caractérisation et applicabilité industrielle de matériaux combinés absorbants-catalyseurs pour le vaporeformage du méthane amélioré par absorption de CO2

Di Giuliano, Andrea 19 December 2017 (has links)
SESMR (Sorption Enhanced Steam Methane Reforming), SMR (Steam Methane Reforming) avec capture de CO2 in situ par un adsorbant solide, peut amener à une exploitation durable du gaz naturel pour la production de H2. La thèse, partie du projet de recherche ASCENT (Advanced Solid Cycles with Efficient Novel Technologies), concerne le développement de matériaux combinés adsorbants catalyseurs Ni-CaO-mayenite pour le SESMR, aux fins d’étudier les influences dues à la fraction de Ni, aux sels précurseurs du Ni (Ni acétate ou Ni nitrate), et à la fraction de CaO disponible. Les techniques ICP AES, XRD, BET/BJH, SEM/EDS, TEM/EDS, TPR et TGA ont été utilisés pour caractériser les matériaux synthétisés. La réactivité a été évaluée par des tests en lit fixe à l’échelle du microréacteur, qui ont aussi permis une sélection des matériaux les plus prometteurs pour une étude de l’applicabilité industrielle par tests multi cycliques SESMR/régénération de solides par un réacteur automatisé à lit fixe. / Sorption enhanced steam methane reforming (SESMR), steam methane reforming (SMR) with in situ CO2 sorption by a solid sorbent, can lead to a sustainable exploitation of natural gas to produce H2. (CSCM). This thesis, as a part of ASCENT (Advanced Solid Cycles with Efficient Novel Technologies) project, deals with Ni-CaO-mayenite combined sorbent-catalyst material for SESMR, to study the effect of Ni fraction, its precursor salt (Ni nitrate or Ni acetate), and free CaO fraction. ICP AES, XRD, BET and BJH methods, SEM EDS, TEM EDS, TPR and TGA were used to characterize synthesized materials. Their reactivity was evaluated by tests in a packed bed microreactor, which served also as a screening tool to choose the most promising materials. Their industrial applicability was assessed by multicycle SESMR/regeneration tests in an automated packed bed bench scale rig.
6

TECHNO-ECONOMIC ANALYSIS OFRENEWABLE GAS PRODUCTION AND ELECTRICITY GENERATION FROM ORGANIC WASTE : A Feasibility Study of a Conceptual Biogas Plant in the Santander Region, Colombia

Sassersson Busadee, Nelly, Ahmed, Laura January 2023 (has links)
Strategies to harness the energy from organic waste is gaining importance on a global scale, especially in countries with large quantities of it. In this paper, a techno-economic analysisand a field study were performed to investigate the feasibility of five scenarios for a conceptual biogas facility, based on a case study from Colombia. The plant designs involved anaerobic digestion followed by different combinations of biogas upgrading, combined heat and power and/or steam methane reforming technologies and investigated four different feedstocks. The results demonstrated that the road infrastructure leading to the current proposed site is inadequate, and a new location should be found. Anaerobic digestion alone was most profitable with the shortest payback period. Organic Municipal Solid Waste and Poultry Manure produced high techno-economic potential depending on the scenario. The production of hydrogen using anaerobic digestion, steam methane reforming and combined heat and power with or without upgrading is not recommended due to the current market prices and high heat consumption. However, it can be profitable to implement green energy initiatives as a strategy to establish and lead future energy markets.
7

Conception et dimensionnement de réacteurs-échangeurs microstructurés pour la production de gaz de synthèse par vaporeformage du méthane / Design and study of microstructured exchanger-reactors for syngas (hydrogen) production via methane steam reforming

Mbodji, Mamadou 02 October 2013 (has links)
L'efficacité globale du procédé de vaporeformage du gaz naturel est affectée par la limitation au transfert thermique au sein du lit catalytique et la génération d'un excès de vapeur d'eau non valorisable. Une des clés possibles pour le rentabiliser davantage consiste à optimiser les transferts thermiques en faisant évoluer le design du réacteur. Un échangeur-réacteur microstructuré a ainsi été retenu. Cet appareil de par la taille submillimétrique de ses canaux permet d'intensifier les transferts de chaleur et de matière. Cependant, la modification de l'architecture traditionnelle oblige à développer de nouveaux catalyseurs (MgAl2O4) déposables dans les microcanaux et permettant d'atteindre conversion élevées (80%, 20 bar, 850°C) à faibles temps de passage (150 ms). La faisabilité du concept et la performance des catalyseurs ont été validées sur un canal dans les conditions industrielles du procédé. Un modèle de réacteur piston hétérogène a été utilisé pour estimer la cinétique de la réaction de reformage. Pour le design de l'échangeur-réacteur, deux approches de modélisation ont été développées en considérant l'équilibre thermodynamique à la surface du catalyseur ou en tenant compte du couplage entre la réaction et les transferts de chaleur et de matière. La simulation de ces modèles a permis de proposer la géométrie des canaux qui correspond au design optimal. Deux méthodologies de design ont été développées ainsi qu'un modèle permettant d'interpréter les résultats expérimentaux en tenant compte de la possibilité du bouchage des canaux. L'échangeur-réacteur fabriqué permet de réduire le coût de production pour une unité fonctionnant sans export de vapeur / Steam Methane Reforming (SMR) of natural gas is characterized by generation of an excess of steam and their low thermal efficiency resulting in a very large device with important heat losses. One of the possible keys to make this process more profitable is to optimize heat transfer by changing the reactor design. A microstructured heat exchanger reactor has been retained. It enables to have fast heat and mass transfers and therefore allow increasing catalytic activity. However, this change in production technology must be accompanied by the development of highly active catalysts (MgAl2O4) that enable to reach high methane conversion (80%, 20 bar, 850°C) at low residence time (150 ms). The concept feasibility and catalysts performance have been validated on one channel in industrial process conditions. Then, a detailed model for acquisition of reaction kinetics has been developed and validated from experimental catalytic tests. For heat exchanger reactor design, two modeling approaches have been developed: by considering that the catalyst is highly active and enables to reach instantaneous equilibrium conversion on the coated catalytic walls of the reactor and by tacking the measured kinetics. Simulation of these models by considering technical constraints on the design enabled to find channel characteristic dimensions, heat power needed and the optimum number of channel which determine the heat exchanger reactor volume. Two fast methods for preliminary design of heat-exchanger reactors have been developed. By using heat exchanger reactor, it is possible to suppress steam excess generation and to reduce syngas production cost

Page generated in 0.0628 seconds