• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of an Immobilized Nitrosomonas europaea Bioreactor for the Production of Methanol from Methane

Thorn, Garrick J. S. January 2006 (has links)
This research investigates a novel approach to methanol production from methane. The high use of fossil fuels in New Zealand and around the world causes global warming. Using clearer, renewable fuels the problem could potentially be reduced. Biomass energy is energy stored in organic matter such as plants and animals and is one of the options for a cleaner, renewable energy source. A common biofuel is methane that is produced by anaerobic digestion. Although methane is a good fuel, the energy is more accessible if it is converted to methanol. While technology exists to produce methanol from methane, these processes are thermo-chemical and require large scale production to be economic. Nitrosomonas europaea, a nitrifying bacterium, has been shown to oxidize methane to methanol (Hyman and Wood 1983). This research investigates the possibility of converting methane into methanol using immobilized N. europaea for use in smaller applications. A trickle bed bioreactor was developed, containing a pure culture of N. europaea immobilized in a biofilm on ceramic raschig rings. The reactor had a biomass concentration of 7.82 ± 0.43 g VSS/l. This was between 4 – 15 times higher than other systems aimed at biologically producing methanol. However, the immobilization dramatically affected the methanol production ability of the cells. Methanol was shown to be produced by the immobilized cells with a maximum production activity of 0.12 ± 0.08 mmol/gVSS.hr. This activity was much lower than the typical reported value of 1.0 mmol/g dry weight.hr (Hyman and Wood 1983). The maximum methanol concentration achieved in this system was 0.129 ± 0.102 mM, significantly lower than previous reported values, ranging between 0.6 mM and 2 mM (Chapman, Gostomski, and Thiele 2004). The results also showed that the addition of methane had an effect on the energy gaining metabolism (ammonia oxidation) of the bacteria, reducing the ammonia oxidation capacity by up to 70%. It was concluded, because of the low methanol production activity and the low methanol concentrations produced, that this system was not suitable for a methanol biosynthesis process.
2

A non-syn-gas catalytic route to methanol production

Wu, Cheng-Tar January 2013 (has links)
At present, more than 80% of the world’s energy consumption and production of chemicals is originated from the use of fossil resources. There is a tremendous growing interest in utilising biomass molecules for energy provision due to their carbon neutrality. Lower alcohols such as methanol and ethanol if produced from biomass as transportation fuels as well as platform chemicals, can become strategically important for many energy/chemically starved countries. Currently, they are synthesised by indirect and inefficient processes. We show for the first time in this thesis study that ethylene glycol, the simplest representative of biomass-derived polyols, can be directly converted to these two lower alcohols by selective hydrogenolysis over modified Raney Ni and Cu catalysts in hydrogen atmosphere. This work provides essential information that may lead to the development of new catalysts for carbohydrate activation to methanol, a novel but important reaction concerning the important biomass conversion to transportable form of energy. Modification of electronic structure and the adsorption properties of Raney catalysts have therefore been achieved by blending with second metal(s). It is found that the activity and selectivity of this reaction can be significantly affected by this approach. In contrast, there is no subtle effect on methanol selectivity despite a great variation in the d-band centre positions of metal catalysts which show a distinctive effect on other products. Our result suggests that methanol is produced on specific surface sites independent from the other sites at an intrinsic rate and will not be converted to other products by the d-band alteration. On the other hand, it is reported in this thesis that a dramatic improvement in the combined selectivity to methanol/ethanol reaching 80% can be obtained over a Pd/Fe<sub>3</sub>O<sub>4</sub> catalyst under relatively milder conditions (20 bar and 195 oC). This direct production of the non-enzymatic bio-alcohols is established over a carefully prepared co-precipitated Pd/Fe<sub>3</sub>O<sub>4</sub> catalyst which gives a metallic phase of unexpectedly high dispersion ranging from small clusters to individual metal adatoms on defective iron oxide to give the required metal-support interaction for the novel synthesis. It is demonstrated that the small PdFe clusters on iron oxide surface provide the active species responsible for methanol production. In addition, a related Rh/Fe<sub>3</sub>O<sub>4</sub> catalyst synthesised by co-precipitation is also shown to be selective for CO<sub>2</sub> and H<sub>2</sub> production from a direct methane-oxygen oxidation reaction. As a result, 2.7% conversion of methane with selectivity ratio of CO<sub>2</sub>/H<sub>2</sub> = 4 in a mixed gas feed stream of CH<sub>2</sub>/O<sub>2</sub> = 30 at 300 <sup>o</sup>C is obtained. The reaction is operated in a kinetically controlled regime at 300<sup>o</sup>C, where the CO formation from reverse water gas shift reaction is greatly suppressed. It is evident that the Rh/Fe<sub>3</sub>O<sub>4</sub> acts as an interesting bifunctional catalyst for this reaction. This catalyst firstly gives a high dispersion of Rh which is expected to deliver a higher surface energy with enhanced activity. The Rh metal surface provides catalytically active sites for dissociation of methane to adsorbed hydrogen and carbon atoms effectively, and active oxygen on metal surface readily catalyses the carbon atoms to CO. Following these elementary reactions, the surface oxygen from Fe<sub>3</sub>O<sub>4</sub> subsequently converts it to CO<sub>2</sub> selectively at the metal-support interface. As a result, the novel study of catalytic biomass conversion and the discoveries of new catalysts are reported in this thesis.
3

Quantificação de metanol celulósico obtido a partir de licor negro de processos kraft de polpação / The quantification of cellulosic methanol obtained from black liquor of kraft pulping processes

Palmeiras, Lívia Paula Silva 06 August 2010 (has links)
Em face ao aumento do preço de energia e combustíveis fósseis o conceito de biorrefinaria vem sendo foco de atenção das indústrias de celulose e papel. Esse conceito visa a obtenção de co-produtos a partir de um processo industrial pré-estabelecido sendo necessários alguns ajustes e investimentos. A possibilidade de recuperação do metanol contido no licor negro traz ao setor de celulose e papel o conceito de biorrefinaria florestal. O metanol celulósico contido no licor negro de fábricas de celulose e papel é o principal composto orgânico volátil responsável por mais de 90 % das emissões nessas fábricas. De forma semelhante aos compostos reduzidos de enxofre a formação do metanol ocorre durante a polpação alcalina em digestores, mas seu potencial para recuperação é desconhecido. Por isso, este trabalho teve como finalidade quantificar o metanol presente nos licores negros industriais provenientes de processo de polpação kraft convencional. Os licores negros industriais foram cedidos por fábricas brasileiras de celulose e papel. Para a quantificação desse álcool um método analítico foi otimizado e validado. Além disso, realizou-se o estudo de formação do metanol em licor negro durante a polpação alcalina para verificação dos parâmetros que determinam a concentração desse álcool no licor. O método otimizado mostrouse adequado à análise de metanol em licor negro e com potencial para amostras de condensados. A quantidade de metanol determinada em licor negro industrial mostrou-se passível de recuperação e sua formação durante a polpação foi influenciada pela intensidade da deslignificação do processo. / Given the rising price of energy and fossil fuels the concept of bio-refinery has been the focus of attention from the pulp and paper industries. This concept aims to achieve by-products from a pre-established industrial process which requires adjustments and investments. The recoverability of methanol contained in black liquor brings to the pulp and paper business sector the concept of forest bio-refinery. The cellulosic methanol contained in black liquor from pulp and paper mills is the main volatile organic compound responsible for more than 90% of emissions in these processing plants. Similarly to reduced sulfur compounds, the formation of methanol occurs during alkaline pulping in digesters but its potential for recovery is unknown. Therefore, this work aimed at quantifying the methanol present in industrial black liquor from conventional kraft pulping process. The black liquors were provided by Brazilian pulp and paper mills. To quantify this alcohol, an analytical method was optimized and validated. Moreover, we carried out a study on formation of methanol in black liquor during the alkaline pulping to specify the parameters to determine the concentration of this alcohol in the black liquor. The optimized method was adequate for the analysis of methanol in black liquor and showed potential to evaluate samples of condensates. The amount of methanol in black liquor has shown to be able to be recovered and its formation during pulping was influenced by the intensity of the delignification process.
4

Quantificação de metanol celulósico obtido a partir de licor negro de processos kraft de polpação / The quantification of cellulosic methanol obtained from black liquor of kraft pulping processes

Lívia Paula Silva Palmeiras 06 August 2010 (has links)
Em face ao aumento do preço de energia e combustíveis fósseis o conceito de biorrefinaria vem sendo foco de atenção das indústrias de celulose e papel. Esse conceito visa a obtenção de co-produtos a partir de um processo industrial pré-estabelecido sendo necessários alguns ajustes e investimentos. A possibilidade de recuperação do metanol contido no licor negro traz ao setor de celulose e papel o conceito de biorrefinaria florestal. O metanol celulósico contido no licor negro de fábricas de celulose e papel é o principal composto orgânico volátil responsável por mais de 90 % das emissões nessas fábricas. De forma semelhante aos compostos reduzidos de enxofre a formação do metanol ocorre durante a polpação alcalina em digestores, mas seu potencial para recuperação é desconhecido. Por isso, este trabalho teve como finalidade quantificar o metanol presente nos licores negros industriais provenientes de processo de polpação kraft convencional. Os licores negros industriais foram cedidos por fábricas brasileiras de celulose e papel. Para a quantificação desse álcool um método analítico foi otimizado e validado. Além disso, realizou-se o estudo de formação do metanol em licor negro durante a polpação alcalina para verificação dos parâmetros que determinam a concentração desse álcool no licor. O método otimizado mostrouse adequado à análise de metanol em licor negro e com potencial para amostras de condensados. A quantidade de metanol determinada em licor negro industrial mostrou-se passível de recuperação e sua formação durante a polpação foi influenciada pela intensidade da deslignificação do processo. / Given the rising price of energy and fossil fuels the concept of bio-refinery has been the focus of attention from the pulp and paper industries. This concept aims to achieve by-products from a pre-established industrial process which requires adjustments and investments. The recoverability of methanol contained in black liquor brings to the pulp and paper business sector the concept of forest bio-refinery. The cellulosic methanol contained in black liquor from pulp and paper mills is the main volatile organic compound responsible for more than 90% of emissions in these processing plants. Similarly to reduced sulfur compounds, the formation of methanol occurs during alkaline pulping in digesters but its potential for recovery is unknown. Therefore, this work aimed at quantifying the methanol present in industrial black liquor from conventional kraft pulping process. The black liquors were provided by Brazilian pulp and paper mills. To quantify this alcohol, an analytical method was optimized and validated. Moreover, we carried out a study on formation of methanol in black liquor during the alkaline pulping to specify the parameters to determine the concentration of this alcohol in the black liquor. The optimized method was adequate for the analysis of methanol in black liquor and showed potential to evaluate samples of condensates. The amount of methanol in black liquor has shown to be able to be recovered and its formation during pulping was influenced by the intensity of the delignification process.

Page generated in 0.0835 seconds