Dans cette thèse, nous construisons une famille concrète d'inclusions de facteurs de type II_1 d'indice (n+ sqrt(n))^2 , pour n entier supérieur ou égal à 1, et nous étudions leurs facteurs intermédiaires, notamment leurs indices et leurs graphes principaux. Nous faisons agir des C*-algèbres de Hopf faibles sur le facteur hyperfini de type II_1 et utilisons ensuite la correspondance de Galois entre les facteurs intermédiaires et les coïdalgèbres. Dans un premier temps, nous décrivons donc une famille de C*-algèbres de Hopf faibles. Elles sont obtenues en appliquant aux catégories de Tambara-Yamagami le théorème de reconstruction pour les catégories de fusion. Nous en donnons ensuite deux familles de coïdalgèbres et montrons qu'elles forment un treillis. Nous sommes donc en mesure de construire les inclusions de facteurs et d'en donner des facteurs intermédiaires. Dans un second temps, nous montrons le lien entre les coïdalgèbres et les catégories de module et nous décrivons un certain type de catégories de module sur les catégories de Tambara-Yamagami. Cette classification étant complète pour une sous-famille des catégories de Tambara-Yamagami, elle nous permet dans ce cas de décrire de manière exhaustive les graphes principaux des facteurs intermédiaires.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00498884 |
Date | 23 June 2010 |
Creators | Mével, Camille |
Publisher | Université de Caen |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0024 seconds