Return to search

Combust?o catal?tica de metano utilizando espin?lio de cobalto proveniente de ?xidos mistos de Co, Mg e Al obtidos da calcina??o de hidr?xidos duplos lamelares / Catalytic combustion of methane using cobalt spinel from mixed Co, Mg and Al oxides obtained from the calcination of lamellar double hydroxides

Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-05-15T11:16:01Z
No. of bitstreams: 1
2016 - Maria Clara Adum de paiva.pdf: 2279180 bytes, checksum: d1de128b3d5f5984c844a68538cd255e (MD5) / Made available in DSpace on 2017-05-15T11:16:01Z (GMT). No. of bitstreams: 1
2016 - Maria Clara Adum de paiva.pdf: 2279180 bytes, checksum: d1de128b3d5f5984c844a68538cd255e (MD5)
Previous issue date: 2016-08-04 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / The demand for electricity production, and the need for thermoelectric use as power generating units, makes it necessary to search for less polluting matrices. In this search the catalytic combustion of methane, both from natural gas and other sources (residue disposal, for example) have shown promising. It is known the use of cobalt oxides is an alternative to the use of catalysts based on noble metals which has shown high performance. In order to potentiate the activity of the cobalt based catalyst, thus reducing both the ignition temperature and the temperature of total burning of methane, this work proposes the production of cobalt-based precursors using different types of layered double hydroxides (LDHs).
Cobalt based catalysts partially substituted in layered double hydroxides (LDH Mg, Al and CO32-) were prepared by co-precipitation and impregnation with a nominal content of 9% CoII in LDH, or by impregnating a commercial hydrotalcite (HT). The LDH precursors were characterized by X-ray powder diffraction (XRD) and infrared absorption spectroscopy (FTIR). The XRD patterns indicated a LDH of 3R polytype. XRD showed the presence of Gibbisite in the HT precursor. The infrared spectra of precursor LDHs presented bands related to ?1, ?2 and ?3 vibrations of the carbonate anion, and interlayer water characteristic bands, thus in line with the XRD data. Analysis by XRD of the catalysts after calcination at 800 ?C showed the presence of periclase and spinel phases. Infrared spectra showed bands ascribed to the Mg-O and Co-O stretching in tetrahedral and octahedral sites as well as bands attributed to the Mg-O-Al bond and the cobalt spinel. The catalytic activity of these materials was investigated in the catalytic combustion of methane under kinetic regime, using predetermined reaction conditions to avoid diffusional limitations, resulting in a significant decrease in the combustion temperature, with the higher activity observed for the catalyst prepared by impregnating a commercial HT. Scanning electron microscopy (SEM) and quantitative chemical analysis (EDS) of catalysts with improved performance show both the homogeneous dispersion of the components in the sample surface and the higher aluminum content of the sample supported on HT. / A demanda de produ??o de energia el?trica, e a necessidade do uso de termel?tricas como unidades geradoras de energia, fazem com que seja necess?ria a busca por matrizes menos poluentes. Nessa busca a combust?o catal?tica do metano, tanto proveniente do g?s natural como de outras fontes (res?duo do tratamento de lixo, por exemplo), tem se mostrado promissora. Sabidamente o uso de ?xidos de cobalto ? uma alternativa, que vem mostrando alto desempenho, ao uso de catalisadores a base de metais nobres. Com o intuito de potencializar a atividade do catalisador a base de cobalto, reduzindo assim tanto a temperatura de igni??o quanto a de queima total do metano, esse trabalho prop?e sua produ??o utilizando como precursor diferentes tipos de hidr?xidos duplos lamelares (HDLs).
Catalisadores ? base de cobalto parcialmente substitu?dos em hidr?xidos duplos lamelares (HDL de Mg, Al e CO32-) foram preparados por co-precipita??o e impregna??o num teor nominal de 9% de CoII em HDL, ou por impregna??o em hidrotalcita comercial (HT). Os HDLs precursores foram caracterizados por difra??o de raios?X pelo m?todo de p? (DRX) e por espectroscopia de absor??o no infravermelho (FTIR). Os difratogramas indicaram a obten??o de um HDL de politipo 3R. Por meio do DRX foi identificada a presen?a de Gibbisita no suporte de HT. Os espectros de infravermelho dos HDLs precursores presentaram bandas referentes ?s vibra??es ?1, ?2 e ?3 do ?nion carbonato, al?m de bandas caracter?sticas de ?gua interlamelar, estando portanto de acordo com os dados de DRX. A an?lise por difra??o de raios-X dos catalisadores ap?s calcina??o a 800?C mostrou apenas as fases espin?lio e pericl?sio. Os espectros de infravermelho apresentaram bandas atribu?das aos estiramentos Mg?O e Co?O em s?tios tetra?dricos e octa?dricos, assim como bandas caracter?sticas de Mg?O?Al e de Co3O4. A atividade catal?tica desses materiais foi investigada na combust?o catal?tica do metano, em regime cin?tico, empregando-se condi??es reacionais preestabelecidas de forma a evitar limita??es difusionais, obtendo-se uma significativa diminui??o na temperatura de combust?o, sendo que a maior atividade foi observada para o catalisador preparado por impregna??o em HT comercial. Foi realizada microscopia eletr?nica de varredura (MEV) e an?lise qu?mica quantitativa (EDS) para os catalisadores com melhor desempenho, mostrando tanto a dispers?o homog?nea dos componentes na superf?cie das amostras como o maior teor de alum?nio presente na amostra suportada em HT.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:jspui/1643
Date04 August 2016
CreatorsPaiva, Maria Clara Adum de
ContributorsHerbst, Marcelo Hawrylak, Guedes, Guilherme pereira, Bigansolli, Antonio Renato
PublisherUniversidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Qu?mica, UFRRJ, Brasil, Instituto de Ci?ncias Exatas
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ
Rightsinfo:eu-repo/semantics/openAccess
Relation8 REFER?NCIAS ANEEL, Boletim de Informa??es Gerenciais, 1? trimestre, 2016 ANNEL, Atlas de Energia El?trica do Brasil, Cap. 6, 2008 ARTIZZU, P., GARBOWSKI, E., PRIMET, M., BRULLE, Y., SAINT-JUST, J. Catalytic combustion of methane on aluminate-supported copper oxide. Catal. Today v. 47, p. 83, 1999. ARTIZZU-DUART, P., MILLET, J.M., GUILHAUME, N., GARBOWSKI, E., PRIMET, M. Catalytic combustion of methane on substituted barium hexaaluminates. Catal. Today v. 59, p. 163, 2000. BUTLER, T .J., LIKENS, G .E., VERMEYLEN, F .M., STUNDER, B .J. B. The relation between NOx emissions and precipitation NO3- in the eastern USA. Atmos. Environ. v.37, p. 2093, 2003. CABRERA, M., GRANADOS, M. L., FIERRO, J. L. G. Structural Reversibility of a Ternary CuO-ZnO-Al2O3 ex-Hydrotalcite-Containing Material During Wet Pd Impregnation. Catal Lett. v. 84, p 153, 2002 CHMIELARZ, L., RUTKOWSKA, M., KUSTROWSKI, P., DROZDEK, M., PIWOWARSKA, Z., DUDEC, B., DZIEMBAJ, R., MICHALLK, M. An influence of thermal treatment conditions of hydrotalcite-like materials on their catalytic activity in the process of N2O decomposition. J. Therm. Anal. Calorim. v. 105, p. 161, 2011. CIAMBELLI, P.; CIMINO, S.; ROSSI, S.D.; FATICANTI, M.; LISI, L.; MINELLI, G.; PETTITI, I.; PORTA, P. ; RUSSO, TURCO, G.; M. AMnO3 (A=La, Nd, Sm) and Sm1?xSrxMnO3 perovskites as combustion catalysts: structural, redox and catalytic properties. Appl. Catal. B. v.24 p.243, 2000. CIMINO, S.; LISI, L.; PIRONE, R.; RUSSO, G.; TURCO, M. Methane combustion on perovskites-based structured catalysts. Catal. Today v.59, p.19, 2000. CREPALDI, E. L.; VALIM, J. B.; Defeitos superficiais em 2H-WS2 observados por microscopia de tunelamento. Qu?mica Nova v. 21, n. 3, p. 5, 1998. 46 DEDAVID, B. A., GOMES, C. I., MACHADO, G. Microscopia eletr?nica de varredura: aplica??es e prepara??o de amostras: materiais polim?ricos, met?licos e semicondutores. EDIPUCRS, Porto Alegre, 2007. DOORNKAMP, C., PONEC, V. The universal character of the Mars and Van Krevelen mechanism. J. Mol. Catalysis a: Chemical v. 162, p. 19, 2000. EUZEN, P.; LE GAL, J.; REBOURS, B.; MARTIN, G. Deactivation of palladium catalyst in catalytic combustion of methane. Catal. Today v.47, p.19, 1999. FERREIRA, M. G., Hidr?xidos duplos lamelares intercalados com o ?nion glifosato: prepara??o, caracteriza??o e estudo de libera??o controlada de glifosato em solu??o aquosa. Disserta??o de Mestrado ? Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2015. FORZATTI, P.; GROPPI, G. Catalytic combustion for the production of energy. Catal. Today v.54 p.165, 1999. GOLODETS, G.I. On Principles of Catalyst Choice for Selective Oxidation. Stud Surf Sci Catal. v 55, p. 693, 1990. HERRERO, M., BENITO, P., LABAJOS, F. M., RIVES, V. Stabilization of Co+2 in layered double hydroxides (LDHs) by microwave-asssted ageing. J. Solid State Chem. v. 180, p. 873, 2007. JANG, B., NELSON, R.M., SPIVEY, J.J., OCAL, M., OUKACI, R., MARCELIN, G. Catalytic oxidation of methane over hexaaluminates and hexaaluminate-supported Pd catalysts. Catal. Today v.47, p.103, 1999. JIANG, Z., YU, J.; CHENG, J., XIAO, T., JONES M. O., HAO, Z., EDWARDS, P. P. Catalytic combustion of methane over mixed derived from Co-Mg/Al ternary hydrotalcites. Fuel Proces. Technol. v. 91, p. 97, 2010. KANNAN, S. Decomposition of nitrous oxide over the catalysts derived from hydrotalcite-like compounds. Appl. Clay Sci. v. 13, p. 347, 1998. KANNAN, S., SWAMY, C. S. Catalytic decomposition of nitrous oxide over calcined cobalt aluminum hydrotalcites. Catal. Today v. 53, p. 725, 1999. 47 KHAN, S. B., KHAN, S. A., ASIRI, A. M. A fascinating combination of Co, Ni and Al nanomaterial for oxygen evolution reaction. Appl. Surf. Sci. v. 370, p. 445 ? 451, 2016. KHASSIN, A. A., SIMENTSOVA, I. I., SHMAKOV, A. N., SHTERTSER, N. V., BULAVCHENKO, O. A., CHEREPANOVA S. V. Effect of nitric oxide on the formation of cobalt ? aluminum oxide structure from layered double hydroxide and its further transformation during reductive activation. Appl. Catal. A v. 514, p. 114, 2016. LEFEZ, B., NKENG, P., LOPITAUX, J., POILLERAT, G. Characterization of cobaltite spinels by reflectance spectroscopy. Mater. Res. Bull. v. 31. n. 10, p. 1263, 1996. LIOTTA, L. F., WU, H., PANTALEO, G., VENEZIA, A. M., Co3O4 nanocrystals and Co3O4?MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: a review. Catal. Sci. Technol. v. 3, p. 3085, 2013. L?PEZ, T., MARMOLEJO, R., ASOMOZA, M., SOL?S, S., G?MEZ, R., WANG, J. A., BOKHIMI, NOVARO, O., NAVARRETE, J., LLANOS, M. E., L?PEZ, E. Preparation of a complete series of single phase homogeneous sol-gels of A12O3, and MgO for basic catalysts. Mater. Lett. v. 32, p.325, 1997. MA, H., WANG, H., WU, T., NA, C. Highly active layered double hydroxide-derived cobalt nano-catalysts for p-nitrophenol reduction. Appl. Catal. B v. 180, P. 471, 2016. MACIEL, A. P., LONGO, E., LEITE, E. R. Di?xido de estanho nanoestruturado: s?ntese e crescimento de nanocristais e nanofitas. Quim. Nova v. 26, n? 6, p. 855-862, 2003. MARS, P., VAN KREVELEN, D. W. Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci. v. 3, p. 41, 1954. MARTINS R.L, BORGES E.P., PINTO M.F.C., NORONHA F.B. Avalia??o do efeito da dispers?o na oxida??o total do benzeno em catalisadores de Pd suportados. In: 12? Congresso Brasileiro de Cat?lise, Angra dos Reis, Vol. 1, p. 324, 2003 NAKAGAKI, S., MANTOVANI, K. M., MACHADO, G. S., CASTRO, K. A. D. F., WYPYCH, F. Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results. Molecules v. 21, p. 291, 2016. 48 NAKAMOTO, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th John Wiley & Sons, New York, 1997. NATILE, M. M., GLISENTI, A. New NiO/Co3O4 and Fe2O3/Co3O4 Nanocomposite Catalysts: Synthesis and Characterization. Chem. Mater. v. 15, p. 2502, 2003. NATILE, M. M., GLISENTI, A. Study of Surface Reactivity of Cobalt Oxides: Interaction with Methanol. Chem. Mater. v. 14, p. 3090, 2002. O'SHEA, V. A. P., HOMS,N., PEREIRA, E.B., NAFRIA, R., PISCINA, P. R. X-ray diffraction study of Co3O4 activation under ethanol steam-reforming. Catal. Today v. 126, p. 148, 2007. PAIVA, M.C.A., FERREIRA C.M., OLIVEIRA P.G.P, PEREIRA M.V.A., HERBST M.H. Methane Catalytic Combustion: Searching for Low Temperature Cobalt/Magnesium Oxide Catalysts. In: XV Brazilian Meeting on Inorganic Chemistry, Angra dos Reis, 2010, PO074. PALOMARES, A. E., L?PEZ-NIETO, J. M., L?ZARO, F. J., L?PEZ, A., CORMA, A. Reactivity in the removal of SO2 and NOx on Co/Mg/Al mixed oxides derived from hydrotalcites. Appl. Catal., B v. 20, p. 257, 1999. PONCE, S.; PENA, M.A.; FIERRO, J.L.G. Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites. Appl. Catal. B. v.24, p.193, 2000. RAM?REZ, J. P., MUL, G., KAPTEIJN, F., MOULIJN, J. A. On the stability of the thermally decomposed Co?Al hydrotalcite against retrotopotactic transformation. Mat. Res. Bull. v. 36, p.1767, 2001. RODRIGUES, J. C. S?ntese, caracteriza??o e aplica??es de argilas ani?nicas do tipo hidrotalcita. Disserta??o de Mestrado ? Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 2007. RUITENBEEK, M., DILLEN, A. J., GROOT, F. M. F., WACHS, I. E., GEUS, J. W., KONINGSBERGER, D. C. The structure of vanadium oxide species on ?-alumina; an in situ X-ray absorption study during catalytic oxidation. Top Catal. v. 10, p. 241, 2000. 49 TRIGUEIRO, F. E. Aplica??o de catalisadores ? base de ?xidos mistos de ni?bia e alumina preparados pelo m?todo sol-gel ? rea??o de oxida??o total do metano. 208 f.. Tese (Doutorado em Qu?mica) ? Instituto Militar de Engenharia, Rio de Janeiro, RJ, 2007. ULLA, M.A., SPRETZ, R., LOMBARDO, E.A., DANIELL, W., KN?ZINGER, H. Catalytic combustion of methane on Co/MgO: characterisation of active cobalt sites. Appl. Catal. B. v. 29, p. 217, 2001 WANG, H., HAN, G. Chemical composition of rainwater and anthropogenic in Chengdu, Soethwest China. Atmos. Res. v. 99, p. 190, 2011. WANG, X., XIE, Y.-C. The promotion effects of Ba on manganese oxide for CH4 deep oxidation. Catal. Lett. v. 72, n. 1-2, p.51, 2001. WATERS, R.D., WEIMER, J.J., SMITH, J.E. An investigation of the activity of coprecipitated gold catalysts for methane oxidation. Catal. Lett. v. 30, n. 1-4, p. 181-188, 1995. XIAO TIAN-CUN, JI SHENG-FU, WANG HAI-TAO, COLEMAN K. S., GREEN M. L. H. Methane combustion over supported cobalt catalysts. J. Mol. Catal A: Chemical v. 175, p. 111, 2001 ZARUR, A.J.; YING, J.Y. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature. v.403, p.65, 2000. ZHAO, S., LI, J. Silver?Cobalt Oxides Derived from Silver Nanoparticles Deposited on Layered Double Hydroxides for Methane Combustion. Chemcatchem v. 7, p. 1966, 2015.

Page generated in 0.0032 seconds