This thesis is devoted to the investigation of ion generation and fluxes from cathodic arc spots for a better understanding of energetic deposition of thin film. The ion generation is related to the arc spot properties, and ion fluxes influence the film deposition. Significantly, the cathodic arc has the explosion characteristic for the ignition process, which is the generation process of ions. Thus, it is not easy to observe the spot characteristics, and some fundamental questions related to cathodic arc spot motion are still open. The multiply charged ions produced from the arc spot ignition process have a higher ion potential energy than ions of other deposition techniques; therefore, consideration of the effect of ion potential energy on film growth is required for the cathodic arc technique.
The first part of this thesis deals with fundamental arc spot characteristics, especially the trend of spot motion in a magnetically steered arc source placed in vacuum or in a reactive gas atmosphere. This is investigated with a streak camera having high spatial and temporal resolutions. To answer the fundamental question of whether the spots have characteristic times, such as a 'periodic spot lifetime' or a 'the periodic characteristic time between spot ignitions”, the streak images were analyzed by fast Fourier transformation (FFT). It was found that the power spectrum of the arc spot fluctuations does not show any specific frequencies, which means the arc spot ignition process can be described by a fractal model, and the spectral slope in the log-log power-frequency diagram has a tendency to be reduced in the presence of a compound (for example oxide or nitride) layer on the cathode surface. Through the fractal analysis and measurements of optical emission spectroscopy, the fundamental limitation of the temporal resolution for the optical emission method is determined and considered.
The second part of this thesis considers cathodic arc’s application aspects: the energetic deposition of thin films and coatings. Most studies related to energetic deposition have previously investigated the effects of ion kinetic energy on film deposition; however, this thesis focuses on the effects of ion potential energy on film growth. To investigate the effect of ion potential energy on film growth, plasma diagnostic by energy-resolved mass spectrometry and deposited film characterization by XRD, XRR, AFM, profilometry and SEM were carried out. The ion potential energy influences the preferential direction of film growth or a polycrystalline growth in the case of aluminum deposition. This result could be a starting point for further research into the effect of ion potential energy on film deposition.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:84462 |
Date | 31 March 2023 |
Creators | Oh, Kyunghwan |
Contributors | Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0502 seconds