• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 10
  • 10
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reactive filtered arc evaporation

Mustapha, Nazir Mohamad January 1993 (has links)
Conventional physical vapour deposition (PVD) techniques usually result in films of lower quality than the corresponding bulk material. A major problem with PVD films is the presence of columns and voids throughout the thickness of the film. The films may have a low packing density, low micro-hardness and in many cases poor adhesion to the substrate. Many of these problems are a direct consequence of the low energy of the depositing atoms arriving at the substrate during film growth. The resulting film porosity gives rise to a reduction in mechanical strength, and in the case of dielectric optical films, a reduction in the refractive index. The properties of deposited films are greatly improved when the substrate or the growing film is bombarded with more energetic particles. An ideal deposition process requires a high flux of film atoms with an energy of approximately 5-50 eV in order to achieve sufficient surface mobility at the substrate to overcome columnar growth.
2

Diagnostics of ion generation and fluxes from cathodic arc spots for a better understanding of energetic deposition of thin films

Oh, Kyunghwan 31 March 2023 (has links)
This thesis is devoted to the investigation of ion generation and fluxes from cathodic arc spots for a better understanding of energetic deposition of thin film. The ion generation is related to the arc spot properties, and ion fluxes influence the film deposition. Significantly, the cathodic arc has the explosion characteristic for the ignition process, which is the generation process of ions. Thus, it is not easy to observe the spot characteristics, and some fundamental questions related to cathodic arc spot motion are still open. The multiply charged ions produced from the arc spot ignition process have a higher ion potential energy than ions of other deposition techniques; therefore, consideration of the effect of ion potential energy on film growth is required for the cathodic arc technique. The first part of this thesis deals with fundamental arc spot characteristics, especially the trend of spot motion in a magnetically steered arc source placed in vacuum or in a reactive gas atmosphere. This is investigated with a streak camera having high spatial and temporal resolutions. To answer the fundamental question of whether the spots have characteristic times, such as a 'periodic spot lifetime' or a 'the periodic characteristic time between spot ignitions”, the streak images were analyzed by fast Fourier transformation (FFT). It was found that the power spectrum of the arc spot fluctuations does not show any specific frequencies, which means the arc spot ignition process can be described by a fractal model, and the spectral slope in the log-log power-frequency diagram has a tendency to be reduced in the presence of a compound (for example oxide or nitride) layer on the cathode surface. Through the fractal analysis and measurements of optical emission spectroscopy, the fundamental limitation of the temporal resolution for the optical emission method is determined and considered. The second part of this thesis considers cathodic arc’s application aspects: the energetic deposition of thin films and coatings. Most studies related to energetic deposition have previously investigated the effects of ion kinetic energy on film deposition; however, this thesis focuses on the effects of ion potential energy on film growth. To investigate the effect of ion potential energy on film growth, plasma diagnostic by energy-resolved mass spectrometry and deposited film characterization by XRD, XRR, AFM, profilometry and SEM were carried out. The ion potential energy influences the preferential direction of film growth or a polycrystalline growth in the case of aluminum deposition. This result could be a starting point for further research into the effect of ion potential energy on film deposition.
3

INFLUENCE OF TITANIUM INTERLAYER THICKNESS ON THE ADHESION OF TiCN THIN FILMS DEPOSITED ON STAINLESS STEEL

Brown, Austin 07 1900 (has links)
Hard coatings deposited by physical vapour deposition (PVD) are commonly used to improve the scratch resistance and hardness of objects made of softer materials such as steel, and they can also be used as decorative coatings since they exhibit a wide range of different colours. In this research, stainless steel tableware utensils were coated with multilayer Ti/TiCN thin films to give the tableware a wear-resistant decorative finish. A cathodic arc PVD system was used to deposit the coatings since it has the potential to produce very dense coatings with excellent adhesion and wear-resistance properties in relatively short deposition times. Several system parameters were varied between deposition cycles to create a large set of samples which included: changing the amount of flatware present inside of the chamber during deposition, changing the size of the flatware used, changing the mounting location of the flatware inside of the chamber, and changing the depletion level of the titanium cathode targets used to deposit titanium. It was found that changing these variables had an effect on the deposition rate of the coating and thus had an effect on the thickness of the titanium interlayer, which was found to be an important factor in achieving good adhesion of the TiCN layer. The optimal titanium interlayer thickness was found to be in the range of approximately 120 to 230 nm. / Thesis / Master of Applied Science (MASc)
4

A Study of Aluminium Nitride and Titanium Vanadium Nitride Thin Films

Taylor, Matthew Bruce, matthew.taylor@rmit.edu.au January 2007 (has links)
Thin film coatings are used to improve the properties of components and products in such diverse areas as tool coatings, wear resistant biological coatings, miniature integrated electronics, micro-mechanical systems and coatings for optical devices. This thesis focuses on understanding the development of intrinsic stress and microstructure in coatings of the technologically important materials of aluminium nitride (AlN) and titanium vanadium nitride (TiVN) deposited by filtered cathodic arc deposition. Thin films of AlN are fabricated under a variety of substrate bias regimes and at different deposition rates. Constant substrate bias was found to have a significant effect on the stress and microstructure of AlN thin films. At low bias voltages, films form with low stress and no preferred orientation. At a bias voltage of -200 V, the films exhibited the highest compressive stress and contained crystals preferentially oriented with their c axis in the plane of the film. At the highest bias of -350 V, the film forms with low stress yet continue to contain crystallites with their c axis constrained to lie in the plane of the film. These microstructure changes with bias are explained in terms of an energy minimisation model. The application of a pulsed high voltage bias to a substrate was found to have a strong effect on the reduction of intrinsic stress within AlN thin films. A model has been formulated that predicts the stress in terms of the applied voltage and pulsing rate, in terms of treated volumes known as thermal spikes. The greater the bias voltage and the higher the pulse rate, the greater the reduction in intrinsic stress. At high pulsing and bias rates, a strong preference for the c axis to align perpendicular to the substrate is seen. This observation is explained by dynamical effects of the incident ions on the growing film, encouraging channelling and preferential sputtering. For the first time, the effect of the rate of growth on AlN films deposited with high voltage pulsed bias was investigated and found to significantly change the stress and microstructure. The formation of films with highly tensile stress, highly compressive stress and nano-composites of AlN films containing Al clusters were seen. These observations are explained in terms of four distinct growth regions. At low rates, surface diffusion and shadowing causes highly porous structures with tensile stress; increased rates produced Al rich films of low stress; increasing the growth rate further led to a dense AlN film under compressive stress and the highest rates produce dense, low stress, AlN due to increased levels of thermal annealing. Finally this thesis analyses the feasibility of forming ternary alloys of high quality TiVN thin films using a dual cathode filtered cathodic arc. The synthesised films show exceptional hardness (greater than either titanium nitride or vanadium nitride), excellent mixing of the three elements and interesting optical properties. An optimum concentration of 23% V content was found to give the highest stress and hardness.
5

Thermal Stability of Arc Evaporated ZrCrAlN

Syed, Muhammad Bilal January 2012 (has links)
This research explores the thermal stability of ZrCrAlN material system. For this purpose fourteen different compositions of ZrCrAlN coatings were deposited onto tungsten carbide substrates by using reactive cathodic arc evaporation. These compositions were further annealed at 800oC, 900oC, 1000oC and 1100oC temperatures. EDS was employed to specify the compositions. The crystal structure of the coatings were analysed by XRD, and the hardness of these coatings was determined by Nanoindentation. The experimental findings reported a significant age hardening of Zr0.16Cr0.12Al0.72N and a delayed h-AlN formation in Zr0.07Cr0.40Al0.52N. ZrCrAlN was thus proved to be thermally stable. / Multifilms,A4:2 Growth and characterization of Multicomponent Nitrides by Magnetron Sputtering and Arc evaporation
6

Propriedades ópticas, mecânicas e estruturais de filmes de carbono amorfo / Optical, mechanical and structural properties of amorphous carbon films

Oliveira Junior, Myriano Henriques de 14 August 2018 (has links)
Orientador: Francisco das Chagas Marques / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-14T14:37:10Z (GMT). No. of bitstreams: 1 OliveiraJunior_MyrianoHenriquesde_D.pdf: 13534676 bytes, checksum: 4da81eaf9a2b22721528c9804801a446 (MD5) Previous issue date: 2009 / Resumo: Neste trabalho desenvolvemos um sistema de deposição de filmes finos pela técnica de arco catódico filtrado (FCVA- Filtered Cathodic Vacuum Arc), que possibilita o desenvolvimento de ligas metálicas e, sobretudo, a deposição de filmes de carbono amorfo altamente tetraédrico. Utilizando este sistema desenvolvemos filmes de carbono amorfo (a-C) com elevada dureza (estimado em cerca de 50 a 60GPa) e alta concentração de ligações sp3 C-C em função da polarização do substrato. Estudamos as propriedades ópticas, mecânicas (stress e dureza), estruturais (Raman e RBS) e a estabilidade térmica (efusão de gases) destes filmes em função da energia de deposição. Também desenvolvemos e caracterizamos filmes de carbono crescidos por FCVA assistido por um feixe de íons secundário de Ar e Kr com diferentes energias, onde analisamos os efeitos da energia deste feixe sobre as propriedades físicas do material resultante. Além das estruturas de carbono intrínseco realizamos um estudo sobre filmes de carbono amorfo hidrogenado depositados por PECVD (plasma enhanced chemical vapor deposition) com diferentes tensões de bias (de 60 à 550V) e atmosferas mistas de CH4/Kr, onde variamos a pressão parcial deste gás nobre entre 0 e 50%. Estudamos a influência deste gás nobre sobre as propriedades estruturais do material assim como a forma como os átomos deste elemento se distribuem dentro da rede amorfa. Esta última análise foi baseada em estudos conduzidos a partir da absorção de raios-x na borda K do átomo de criptônio, onde verificamos a aglomeração destes átomos na forma de estruturas solidas. Também investigamos os processos de transformações estruturais ocorridas em estruturas a-C:H e ta-C com a temperatura baseadas na efusão de gases. Para este estudo construímos um sistema que funciona em ultra-alto vácuo, com temperatura controlada variando de ambiente até cerca de 1000 graus. Os estudos sobre as propriedades estruturais foram baseados, sobretudo, em medidas de espectroscopia de espalhamento Raman com radiação de excitação na região do visível e do ultravioleta, o que possibilita a obtenção de informações mais detalhadas sobre a forma como os átomos sp2 e sp3 distribuem-se no material. Por fim, exploramos o potencial de aplicação de três tipos de carbono amorfo; tipo polimérico (PLC), tipo diamante (DLC) e tetraédrico (ta-C) como monocamadas antirefletoras para células solares de silício cristalino e comparamos com o desempenho obtido com camadas fabricadas com materiais usualmente empregados na indústria para tal aplicação. Os resultados mostraram que filmes de carbono amorfo podem ser utilizados como camada anti-refletora. Os filmes de carbono tipo polimérico apresentaram resultados muito semelhantes aos obtidos com camadas convencionais de dióxido de estanho / Abstract: In this work we designed, manufactured and characterized a Filtered Cathodic Vacuum Arc (FCVA) deposition system. This technique is usually applied in the preparation of metallic alloys and highly sp3 - hybridized amorphous carbon thin films. By using this system we prepared a series of amorphous carbon films (a-C) with high hardness (up to ~60GPa) and high concentration of sp3 C-C bonds varying the deposition energy of the C+ ions. Mechanical (hardness and intrinsic stress) and structural (Raman, RBS and gas effusion) were investigated. Another series of a-C was developed by FCVA, but using an assisted beam of Ar or Kr as a function of the ion energy. The main purpose of this work is to understand of the effects of the bombardment of an energetic ion beam on the physical properties of the films. Another study performed on hydrogenated amorphous carbon films (a-C:H) were carried out on samples deposited by plasma enhanced chemical vapor deposition (PECVD). The films were prepared with different self-bias, varying from 60 up to 550V, and different mixed atmospheres of methane and krypton gases, varying the partial pressure of krypton from 0 to 50%. Films prepared at low bias are polymeric-like (PLC), while films prepared at high bias are diamond-like (DLC). We had performed investigations on the influence of this noble gas on the structural properties of the a-C:H films and how the Kr atoms are arranged within the amorphous matrix. The distribution of Kr atoms was studied mainly by x-ray absorption on the krypton absorption K-edge. Due to the absence of EXAFS oscillations the spectra were interpreted using the XANES region, which gave us evidences of clustering of Kr atoms. The processes involved in the a-C:H nd ta-C structural transformations during the thermal annealing were analyzed by means of thermal gas effusion measurements (using a quadrupole spectrometer) in a system developed in our laboratory. Raman scattering spectroscopy measurements were carried out with excitation radiation in the visible and ultraviolet ranges. This choice is justified due to the more detailed information obtained by multiwavelength Raman spectroscopy on the distribution of sp2and sp3sites within the amorphous carbon matrix. Finally, we had evaluated the possibility of the application of three types of amorphous carbon structures, the diamond-like and polymeric-like carbon, and the ta-C as antireflective coating on crystalline silicon solar cells. We observed that all amorphous carbon structures (DLC, PLC and ta-C) increase the short-circuit current of the solar cells. In the case of PLC films, the result is comparable to that obtained with conventional antireflective coating such as tin dioxide (SnO2) / Doutorado / Física da Matéria Condensada / Doutor em Ciências
7

Solar selective coatings based on carbon:transition metal nanocomposites

Heras, I., Guillén, E., Krause, M., Pardo, A., Endrino, J. L., Escobar, R. 07 May 2019 (has links)
The design of efficient and stable solar selective coatings for Concentrating Solar Power (CSP) central receivers requires a comprehensive knowledge about the incorporated materials. In this work solar selective coatings were grown by filtered cathodic vacuum arc (FCVA) deposition. The complete stacks consist of an infrared reflection layer, an absorber layer of C:ZrC nanocomposites and an antireflection layer. The Carbon-transition metal nanocomposites were studied as absorber materials because they show appropriate optical properties, i.e. high absorption in the solar region and low thermal emittance. Furthermore metal carbides are thermally and mechanically stabile in air at high temperatures. In order to optimize the absorber layer, the metal content was controlled by adjusting the pulse ratio between the two arc sources. The elemental composition of the absorber layers was determined by Ion Beam Analysis. X-Ray diffraction (XRD) measurements show the formation of metal carbides when the metal content is high enough. The optical properties of the deposited coatings were characterized by spectroscopic ellipsometry (SE). The reflectance spectra of the complete selective coating were simulated with the optical software CODE. Bruggeman effective medium approximation (EMA) was employed to average the dielectric functions of the two components which compose the nanocomposite in the absorber layer. Good agreement was found between simulated and measured reflectance spectra of the solar selective multilayer.
8

Obtenção e caracterização microestrutural e química de recobrimentos multicamadas de NbN/CrN para aplicações tribológicas pelo processo de deposição física de vapor. / Production and microestructural and chemical characterization of NbN/CrN multilayer coatings for tribological applications by physical vapor deposition process.

Araujo, Juliano Avelar 18 August 2016 (has links)
O presente trabalho tem como objetivo contribuir para o conhecimento da morfologia, microestrutura e modulação composicional (perfil da composição química) de recobrimentos NbN/CrN multicamadas nanoestruturados com diferentes periodicidades (entre 4 e 20 nm) depositado por PVD pela técnica de arco catódico. Foi alcançada espessura total do recobrimento de 30 ?m mantendo-se a homogeneidade da periodicidade ao longo de toda a espessura. Análises de difração de Raios-X, aliadas a modelamento computacional (difração dinâmica), e análise de microscopia eletrônica de transmissão (MET), permitiram a determinação da periodicidade das multicamadas e a espessura das camadas individuais de NbN e CrN e análise qualitativa da coerência entre as camadas. O modo de varredura (SMET) acoplado com espectroscopia de perda de energia de elétrons (EELS), permitiu medir a variação da composição química ao longo das nano-camadas individuais. A análise por EELS mostrou que, mesmo para a menor periodicidade estudada - 4nm, não há eliminação da modulação composicional. Assim, um modelo de Análise de Elementos Finitos (FEA) foi utilizado para avaliar a componente das tensões residuais intrínsecas ao longo das multicamadas, alimentado com o cáculo da deformação do parâmetro de rede, que pela Lei de Vergards varia em função da modulação química, ao longo das camadas de NbN e CrN. A microindentação instrumentada e o teste de riscamento mostraram aumento de dureza e maior resistência ao risco com a redução da periodicidade das multicamadas nanoestruturadas de NbN/CrN. O cruzamento dos resultados das diversas técnicas empregadas permitiu análise detalhada da estrutura e morfologia destes recobrimentos e a influência das periodicidades na modulação química das camadas individuais, possibilitando o desenvolvimento de um modelo qualitativo. Este aprendizado irá permitir a deposição de recobrimentos multicamadas nanoestruturados com melhor controle das propriedades mecânicas objetivadas em função da aplicação final do produto. / The present work aims at contributing to the knowledge, microstructure and compositional modulation (Chemical composition profile) of NbN/CrN multilayer nanostructured coatings with different periodicities (between 4 and 20nm) deposited by cathodic arc technique. It was reached a total coating thickness of 30 ?m preserving the periodicity homogeneity along the thickness. X-Ray Diffraction analisys, combined with computational modeling (dinamic diffraction) and Transmission Eletron Microscopy analysis (TEM), allowed the multilayer periodicity determination, the individual NbN and CrN layer thicknesses as well as the qualitative analysis of coherency among layers. The scanning mode (STEM) combined with Electron Energy Loss Spectroscopy (EELS), allowed the measurement of the chemical composition variation along the individual nanolayers. The EELS analysis showed that, even for the lowest periodicity studied - 4nm, there is no elimination of the compositional modulation. Thus, the Finite Element Analysis model (FEA) was used to evaluate the intrinsic residual stress component along the multilayers, fed with the lattice parameter deformation calculation, which, by Vegards Law varies as a function of the chemical modulation, along the NbN and CrN layers. The instrumented microindentation and the Scratch test showed hardness increase and higher scratch resistance as periodicity decreases on the nanostructured multilayer of NbN/CrN. The cross-linking data of the several techniques employed enabled a detailed analysis of the structure and morphology of such coatings and the influence of the periodicities on the individual layer chemical modulation, allowing the development of a qualitative model. This learning will allow multilayer nanostructured coatings deposition with a better control of desired mechanical properties as a function of the final product application.
9

Obtenção e caracterização microestrutural e química de recobrimentos multicamadas de NbN/CrN para aplicações tribológicas pelo processo de deposição física de vapor. / Production and microestructural and chemical characterization of NbN/CrN multilayer coatings for tribological applications by physical vapor deposition process.

Juliano Avelar Araujo 18 August 2016 (has links)
O presente trabalho tem como objetivo contribuir para o conhecimento da morfologia, microestrutura e modulação composicional (perfil da composição química) de recobrimentos NbN/CrN multicamadas nanoestruturados com diferentes periodicidades (entre 4 e 20 nm) depositado por PVD pela técnica de arco catódico. Foi alcançada espessura total do recobrimento de 30 ?m mantendo-se a homogeneidade da periodicidade ao longo de toda a espessura. Análises de difração de Raios-X, aliadas a modelamento computacional (difração dinâmica), e análise de microscopia eletrônica de transmissão (MET), permitiram a determinação da periodicidade das multicamadas e a espessura das camadas individuais de NbN e CrN e análise qualitativa da coerência entre as camadas. O modo de varredura (SMET) acoplado com espectroscopia de perda de energia de elétrons (EELS), permitiu medir a variação da composição química ao longo das nano-camadas individuais. A análise por EELS mostrou que, mesmo para a menor periodicidade estudada - 4nm, não há eliminação da modulação composicional. Assim, um modelo de Análise de Elementos Finitos (FEA) foi utilizado para avaliar a componente das tensões residuais intrínsecas ao longo das multicamadas, alimentado com o cáculo da deformação do parâmetro de rede, que pela Lei de Vergards varia em função da modulação química, ao longo das camadas de NbN e CrN. A microindentação instrumentada e o teste de riscamento mostraram aumento de dureza e maior resistência ao risco com a redução da periodicidade das multicamadas nanoestruturadas de NbN/CrN. O cruzamento dos resultados das diversas técnicas empregadas permitiu análise detalhada da estrutura e morfologia destes recobrimentos e a influência das periodicidades na modulação química das camadas individuais, possibilitando o desenvolvimento de um modelo qualitativo. Este aprendizado irá permitir a deposição de recobrimentos multicamadas nanoestruturados com melhor controle das propriedades mecânicas objetivadas em função da aplicação final do produto. / The present work aims at contributing to the knowledge, microstructure and compositional modulation (Chemical composition profile) of NbN/CrN multilayer nanostructured coatings with different periodicities (between 4 and 20nm) deposited by cathodic arc technique. It was reached a total coating thickness of 30 ?m preserving the periodicity homogeneity along the thickness. X-Ray Diffraction analisys, combined with computational modeling (dinamic diffraction) and Transmission Eletron Microscopy analysis (TEM), allowed the multilayer periodicity determination, the individual NbN and CrN layer thicknesses as well as the qualitative analysis of coherency among layers. The scanning mode (STEM) combined with Electron Energy Loss Spectroscopy (EELS), allowed the measurement of the chemical composition variation along the individual nanolayers. The EELS analysis showed that, even for the lowest periodicity studied - 4nm, there is no elimination of the compositional modulation. Thus, the Finite Element Analysis model (FEA) was used to evaluate the intrinsic residual stress component along the multilayers, fed with the lattice parameter deformation calculation, which, by Vegards Law varies as a function of the chemical modulation, along the NbN and CrN layers. The instrumented microindentation and the Scratch test showed hardness increase and higher scratch resistance as periodicity decreases on the nanostructured multilayer of NbN/CrN. The cross-linking data of the several techniques employed enabled a detailed analysis of the structure and morphology of such coatings and the influence of the periodicities on the individual layer chemical modulation, allowing the development of a qualitative model. This learning will allow multilayer nanostructured coatings deposition with a better control of desired mechanical properties as a function of the final product application.
10

Foundations of physical vapor deposition with plasma assistance

Gudmundsson, Jon Tomas, Anders, André, von Keudell, Achim 30 November 2023 (has links)
Physical vapor deposition (PVD) refers to the removal of atoms from a solid or a liquid by physical means, followed by deposition of those atoms on a nearby surface to form a thin film or coating. Various approaches and techniques are applied to release the atoms including thermal evaporation, electron beam evaporation, ion-driven sputtering, laser ablation, and cathodic arc-based emission. Some of the approaches are based on a plasma discharge, while in other cases the atoms composing the vapor are ionized either due to the release of the film-forming species or they are ionized intentionally afterward. Here, a brief overview of the various PVD techniques is given, while the emphasis is on sputtering, which is dominated by magnetron sputtering, the most widely used technique for deposition of both metallic and compound thin films. The advantages and drawbacks of the various techniques are discussed and compared.

Page generated in 0.0717 seconds