Return to search

Electrochemical characterization of ordered mesoporous carbide-derived carbons

Porous carbon derived from an inorganic silicon carbide (SiC) precursor, termed SiC-derived carbon, is an attractive material for electrochemical energy storage applications, including electrodes for electrical double layer capacitors (EDLCs). The objective of this thesis is to investigate the effects that the carbide-derived carbon (CDC) microstructure and pore structure have on the energy and power characteristics of the EDLC electrodes.
Conventional SiC CDC is produced from non-porous crystalline SiC powder at temperatures above 800 °C. Here we studied the performance of SiC CDCs produced by chlorination at 700-900 °C of an ordered mesoporous SiC precursor, which was synthesized via a 1000 °C pyrolysis of polycarbosilane infiltrated into an SBA-15 silica template having ordered mesopores. The SiC CDC was purified from chlorine impurities by annealing in ammonia. The surface area and pore size of the purified SiC CDC was characterized via N2 and CO2 sorption using density functional theory (DFT) and Brunnauer, Emmet, and Teller (BET) theory. The specific capacitance, power and energy densities were characterized via electrochemical measurements of the SiC CDC electrodes in 1 M tetraethylammonium tetrafluoroborate (TEABF4) acetonitrile solution.
The SiC CDC exhibited a specific surface area (SSA) in excess of 2400 m2/g and gravimetric capacitance values of up to ~ 150 F/g, among the highest ever reported for any electrodes in this electrolyte. The ordered mesopores allowed for fast ion transport within each particle, resulting in excellent capacity retention under high current rates and ultra-fast frequency response, thus allowing for extremely high power and energy densities. The best overall performance was achieved in SiC CDC samples chlorinated at the lowest temperature of 700 °C.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/34681
Date08 July 2009
CreatorsKorenblit, Yair
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds