Return to search

Stochastic description of rare events for complex dynamics in the Solar System / Modélisation stochastique d'événements rares dans des systèmes dynamiques complexes de notre système solaire

Cette thèse considère quatre systèmes physiques complexes pour lesquels il est exceptionnellement possible d’identifier des variables lentes qui contrôlent l'évolution à temps long du système complet. La séparation d'échelle de temps entre ces variables lentes et les autres variables permet d'utiliser la technique de moyennisation stochastique pour obtenir une dynamique effective pour les variables lentes. Cette thèse considère la possibilité de prédire les événements rares dans le système solaire. Nous avons étudié deux types d’événements rares. Le premier est un renversement possible de l'axe de rotation de la Terre en l'absence des effets de marée de la Lune. Le second est la désintégration de l'ensemble du système solaire interne suite à une instabilité dans l'orbite de Mercure. Pour chacun des deux problèmes, il existe des variables lentes non triviales, qui ne sont pas données par des variables physiques naturelles. La moyennisation stochastique a permis de découvrir le mécanisme physique qui conduit à ces événements rares et de donner, par une approche purement théorique, l'ordre de grandeur de la probabilité de ces phénomènes. Nous avons également montré que la déstabilisation de Mercure sur un temps inférieur à l'âge du système solaire obéit à un mécanisme d'instanton bien décrit par la théorie des grandes déviations. Le travail effectué dans cette thèse ouvre donc un nouveau champ d'action pour l'utilisation d'algorithmes de calcul d'événements rares. Nous avons utilisé pour la première fois les théorèmes de moyennisation stochastique dans le cadre de la mécanique céleste pour quantifier l'effet stochastique des astéroïdes sur la trajectoire des planètes. Enfin, une partie du travail porte sur un problème de turbulence géophysique: dans l'atmosphère de Jupiter, on peut observer des structures zonales (jets) à grande échelles évoluant beaucoup plus lentement que les tourbillons environnants. Nous montrons qu'il est pour la première fois possible d'obtenir explicitement le profil de ces jets par moyennisation des degrés de liberté turbulents rapides. / The present thesis describes four complex dynamical systems. In each system, the long-term behavior is controlled by a few number of slow variables that can be clearly identified. We show that in the limit of a large timescale separation between the slow variables and the other variables, stochastic averaging can be performed and leads to an effective dynamics for the set of slow variables. This thesis also deals with rare events predictions in the solar system. We consider two possible rare events. The first one is a very large variation of the spin axis orientation of a Moonless Earth. The second one is the disintegration of the inner solar system because of an instability in Mercury’s orbit. Both systems are controlled by non-trivial slow variables that are not given by simple physical quantities. Stochastic averaging has led to the discovery of the mechanism leading to those rare events and gives theoretical bases to compute the rare events probabilities. We also show that Mercury’s short-term destabilizations (compared to the age of the solar system) follow an instanton mechanism, and can be predicted using large deviation theory. The special algorithms devoted to the computation of rare event probabilities can thus find surprising applications in the field of celestial mechanics. We have used for the first time stochastic averaging in the field of celestial mechanics to give a relevant orders of magnitude for the long-term perturbation of planetary orbits by asteroids. A part of the work is about geophysical fluid mechanics. In Jupiter atmosphere, large scale structures (jets) can be observed, the typical time of evolution of which is much larger than that of the surrounding turbulence. We show for the first time that the mean wind velocity can be obtained explicitly by averaging the fast turbulent degrees of freedom.

Identiferoai:union.ndltd.org:theses.fr/2018LYSEN046
Date21 September 2018
CreatorsWoillez, Éric
ContributorsLyon, Bouchet, Freddy
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.003 seconds