Return to search

Synthesis of Bacterial Glycerophospholipids for Biomembrane Model Studies: A Means to Advanced Biofuels

To reduce reliance on fossil fuels, sustainable biofuels are being pursued, especially advanced biofuels like 1-butanol that have higher energy content and greater compatibility with existing infrastructure than ethanol. A persistent challenge is the yield-limiting toxicity of biofuels and process solvents, such as tetrahydrofuran, to the microbes that ferment biomass into biofuel. The cell membrane is a focal point of toxicity, and understanding how it interacts with fuels and solvents is key to improving yield. Phospholipid bilayers are the core of biomembranes, and model biomembranes of defined composition provide the ideal platform for biophysical studies. To this end, glycerophospholipids characteristic of Bacillus subtilis, a model producer organism, were synthesized. Two fatty acids (iso- and anteisopentadecanoic acids) characteristic of Bacilli were synthesized and incorporated into representative phosphatidic acid, phosphatidylethanolamine and phosphatidylglycerol lipids. The validated synthetic approach opens the door to future studies on the interaction of biofuels and solvents with biomembranes.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5806
Date01 December 2023
CreatorsAdulley, Felix
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright by the authors.

Page generated in 0.0031 seconds