Return to search

Thermorheology of living cells: impact of temperature variations on cell mechanics

Upon temperature changes, we observe a systematic shift of creep
compliance curves J (t) for single living breast epithelial cells. We use a
dual-beam laser trap (optical stretcher) to induce temperature jumps within
milliseconds, while simultaneously measuring the mechanical response of whole
cells to optical force. The cellular mechanical response was found to differ
between sudden temperature changes compared to slow, long-term changes
implying adaptation of cytoskeletal structure. Interpreting optically induced cell
deformation as a thermorheological experiment allows us to consistently explain
data on the basis of time–temperature superposition, well known from classical
polymer physics. Measured time shift factors give access to the activation
energy of the viscous flow of MCF-10A breast cells, which was determined
to be 80 kJ mol−1. The presented measurements highlight the fundamental
role that temperature plays for the deformability of cellular matter. We propose
thermorheology as a powerful concept to assess the inherent material properties
of living cells and to investigate cell regulatory responses upon environmental
changes.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:80420
Date16 August 2022
CreatorsKießling, Tobias R., Stange, Roland, Käs, Josef A., Fritsch, Anatol W.
PublisherIOP Publishing
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation045026

Page generated in 0.0022 seconds