Erbin belongs to the LAP (leucine-rich repeat and PDZ domain) family of scaffolding proteins that play important roles in orchestrating cell signaling. Here, we show that Erbin functions as a tumor suppressor in colon cancer. Analysis of Erbin expression in patient specimens reveals that Erbin is downregulated at both mRNA and protein levels in tumor tissues. Functionally, knockdown of Erbin disrupts epithelial cell polarity and increases cell proliferation in 3D culture. In addition, silencing Erbin results in an increase in the amplitude and duration of signaling through Akt and RAS/RAF pathways. Moreover, Erbin-loss induces epithelial-mesenchymal transition (EMT), which coincides with a significant increase in cell migration and invasion. Erbin interacts with KSR1 and displaces it from the RAF/MEK/ERK complex to prevent signaling propagation. Furthermore, genetic deletion of Erbin in Apc knockout mice promotes tumorigenesis and significantly reduces survival. Tumor organoids derived from Erbin/Apc double knockout mice have increased tumor initiation potential along with increased Wnt target gene expression as seen by qPCR. Collectively, the studies within this dissertation identify Erbin as a negative regulator of EMT and tumor progression by directly suppressing Akt and RAS/RAF signaling in vivo.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:biochem_etds-1036 |
Date | 01 January 2018 |
Creators | Stevens, Payton D. |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Molecular and Cellular Biochemistry |
Page generated in 0.002 seconds