• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RASA3, a Key Player in Dopamine D2S Receptor-mediated MAPK Signaling

Ma, Xun 10 February 2011 (has links)
The short form of dopamine D2 receptor (D2S) functions as a presynaptic autoreceptor on dopamine neurons and has an inhibitory effect on dopaminergic tone. D2-MAPKs pathway is involved in many physiological events like production of prolactin and tyrosine hydroxylase (TH) expression. However, the effect of D2S receptor signalling on MAPKs is cell type specific, and is not fully understood.A recent study in our lab has identified a Gαi-interacting ras-MAPK inhibitor RASA3. Here, we showed that RASA3 is the key effector in D2-induced inhibition of MAPK by knockdown of endogenous RASA3 in the GH4 cell using RASA3 siRNA. We have also transfected a dominant negative RASA3 to compete with the endogenous RASA3 for the binding site on Ras. Both RASA3-siRNA and dominant negative RASA3 blocked D2S-induced inhibition of MAPK activation, clearly implicating that RASA3 is a key effector in Gαi3-dependent D2S mediated MAPKs inhibition To determine whether RASA3’s inhibitory effect could be reconstituted in fibroblast cells, the effect of RASA3 on D2-mediated ERK1/2 activation in COS7 cells was tested. Our results show that both active Gαi2 (or Gαi3) and active RASA3 are required for optimal inhibition of ERK1/2 activation in fibroblast COS7 cells.
2

RASA3, a Key Player in Dopamine D2S Receptor-mediated MAPK Signaling

Ma, Xun 10 February 2011 (has links)
The short form of dopamine D2 receptor (D2S) functions as a presynaptic autoreceptor on dopamine neurons and has an inhibitory effect on dopaminergic tone. D2-MAPKs pathway is involved in many physiological events like production of prolactin and tyrosine hydroxylase (TH) expression. However, the effect of D2S receptor signalling on MAPKs is cell type specific, and is not fully understood.A recent study in our lab has identified a Gαi-interacting ras-MAPK inhibitor RASA3. Here, we showed that RASA3 is the key effector in D2-induced inhibition of MAPK by knockdown of endogenous RASA3 in the GH4 cell using RASA3 siRNA. We have also transfected a dominant negative RASA3 to compete with the endogenous RASA3 for the binding site on Ras. Both RASA3-siRNA and dominant negative RASA3 blocked D2S-induced inhibition of MAPK activation, clearly implicating that RASA3 is a key effector in Gαi3-dependent D2S mediated MAPKs inhibition To determine whether RASA3’s inhibitory effect could be reconstituted in fibroblast cells, the effect of RASA3 on D2-mediated ERK1/2 activation in COS7 cells was tested. Our results show that both active Gαi2 (or Gαi3) and active RASA3 are required for optimal inhibition of ERK1/2 activation in fibroblast COS7 cells.
3

RASA3, a Key Player in Dopamine D2S Receptor-mediated MAPK Signaling

Ma, Xun 10 February 2011 (has links)
The short form of dopamine D2 receptor (D2S) functions as a presynaptic autoreceptor on dopamine neurons and has an inhibitory effect on dopaminergic tone. D2-MAPKs pathway is involved in many physiological events like production of prolactin and tyrosine hydroxylase (TH) expression. However, the effect of D2S receptor signalling on MAPKs is cell type specific, and is not fully understood.A recent study in our lab has identified a Gαi-interacting ras-MAPK inhibitor RASA3. Here, we showed that RASA3 is the key effector in D2-induced inhibition of MAPK by knockdown of endogenous RASA3 in the GH4 cell using RASA3 siRNA. We have also transfected a dominant negative RASA3 to compete with the endogenous RASA3 for the binding site on Ras. Both RASA3-siRNA and dominant negative RASA3 blocked D2S-induced inhibition of MAPK activation, clearly implicating that RASA3 is a key effector in Gαi3-dependent D2S mediated MAPKs inhibition To determine whether RASA3’s inhibitory effect could be reconstituted in fibroblast cells, the effect of RASA3 on D2-mediated ERK1/2 activation in COS7 cells was tested. Our results show that both active Gαi2 (or Gαi3) and active RASA3 are required for optimal inhibition of ERK1/2 activation in fibroblast COS7 cells.
4

RASA3, a Key Player in Dopamine D2S Receptor-mediated MAPK Signaling

Ma, Xun January 2011 (has links)
The short form of dopamine D2 receptor (D2S) functions as a presynaptic autoreceptor on dopamine neurons and has an inhibitory effect on dopaminergic tone. D2-MAPKs pathway is involved in many physiological events like production of prolactin and tyrosine hydroxylase (TH) expression. However, the effect of D2S receptor signalling on MAPKs is cell type specific, and is not fully understood.A recent study in our lab has identified a Gαi-interacting ras-MAPK inhibitor RASA3. Here, we showed that RASA3 is the key effector in D2-induced inhibition of MAPK by knockdown of endogenous RASA3 in the GH4 cell using RASA3 siRNA. We have also transfected a dominant negative RASA3 to compete with the endogenous RASA3 for the binding site on Ras. Both RASA3-siRNA and dominant negative RASA3 blocked D2S-induced inhibition of MAPK activation, clearly implicating that RASA3 is a key effector in Gαi3-dependent D2S mediated MAPKs inhibition To determine whether RASA3’s inhibitory effect could be reconstituted in fibroblast cells, the effect of RASA3 on D2-mediated ERK1/2 activation in COS7 cells was tested. Our results show that both active Gαi2 (or Gαi3) and active RASA3 are required for optimal inhibition of ERK1/2 activation in fibroblast COS7 cells.
5

ERK and JNK activation is essential for transformation by v-Rel

Sheely, Juliana Irene 23 October 2009 (has links)
v-Rel is the acutely oncogenic member of the NF-[kappa]B family of transcription factors and transforms cells through the altered regulation of pathways normally controlled by cellular NF-[kappa]B. Initial studies revealed that expression of v-Rel results in the strong and sustained activation of the ERK and JNK MAP kinases. This induction is critical for the v-Rel transformed phenotype, as suppression of MAPK activity with chemical inhibitors or siRNA severely limited colony formation of v-Rel transformed cell lines of hematopoietic origin. However, signaling must be maintained within a certain range in these cells, as strong additional activation of either pathway through expression of constitutively active MKK mutants also attenuated the transformed phenotype. Studies in primary spleen cells revealed that MAPK signaling is also required for the early stages of v-Rel-mediated transformation. However, constitutive MAPK activity further enhanced the transformation efficiency of v-Rel in primary cells. These studies, as well as analogous experiments in DT40 cells, indicate distinct requirements for MAPK activity at different stages of v-Rel-mediated transformation. The proto-oncoprotein, c-Rel, only weakly activates ERK and JNK signaling compared to v-Rel. Importantly, elevated MAPK activity enhanced transformation by c-Rel, indicating that the ability of v-Rel to induce MAPK signaling is a major contributor to its oncogenic potential. Taken together, this work demonstrates an important role for ERK and JNK activity in transformation by v-Rel. Additional studies examined mechanisms through which MAPK activity is regulated in v-Rel transformed cells. Feedback regulation of the ERK activator, MKK1, at T292 was shown to limit ERK activation in v-Rel transformed cells, preventing the detrimental effects of constitutive activity. This result is the first indication that this regulation may have a role in the maintenance of transformation. Further, several v-Rel induced cytokines were identified that activate ERK and JNK signaling in v-Rel transformed cells, revealing one means by which v-Rel-dependent transcriptional changes lead to MAPK activation. These studies demonstrate the integration of multiple mechanisms in achieving the optimal levels of MAPK activity that are essential for v-Rel-mediated transformation. / text
6

Lithium Attenuates Bupivacaine-Induced Neurotoxicity in Vitro Through Phosphatidylinositol-3-kinase/Threonine-Serine Protein kinase B- and Extracellular Signal-Regulated kinase-Dependent Mechanisms

Wang, Z., Shen, J., Wang, J., Lu, T., Li, Chuanfu, Zhang, X., Liu, L., Ding, Z. 29 March 2012 (has links)
Local anesthetics (LAs) are necessary for the regional anesthesia, spinal anesthesia, and pain management. However, the application of LAs may cause neurotoxicity and result in postoperative neurological complications. Lithium is a mood stabilizer for the treatment of bipolar disorder and may exert neuroprotective effects. In this study, we evaluated the effects of lithium on bupivacaine (a frequently used LAs)-induced injury in mouse neuroblastoma neuro 2a (N2a) cells. N2a cells were treated with bupivacaine in the presence or absence of lithium. After treatment, the cell injury was evaluated by examination of viability, morphology changes, and nuclear condensation. The levels of mitochondrial transmembrane potential (δψm) and activation of phosphatidylinositol-3-kinase (PI3K)/ threonine-serine protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) were also examined. In a separate experiment, we investigated the effect of Akt and ERK inhibition on cell injury after bupivacaine and lithium treatment. Pretreatment of N2a cells with lithium significantly attenuated bupivacaine-induced cell injury. Lithium pretreatment completely reversed the suppression of PI3K/Akt and ERK signalings and significantly prevented the decline of δψ m in N2a cells after bupivacaine treatment. More importantly, pharmacological inhibition of Akt and ERK diminished the protective effect of lithium against bupivacaine-induced neuronal death. Our data suggest that lithium pretreatment provides a protective effect on bupivacaine-induced neuronal cell injury. This action of lithium is mediated through, at least in part, the activating of PI3K/Akt- and ERK-dependent mechanisms. Because lithium is a clinically proved safety drug for neurons, it is worthwhile to identify whether coadministration of LAs with lithium will decrease the risks of LAs-induced postoperative neurological complications in clinic practice.
7

THE FUNCTION OF ERBIN, A SCAFFOLD PROTEIN, AS A TUMOR SUPPRESSOR IN COLON CANCER

Stevens, Payton D. 01 January 2018 (has links)
Erbin belongs to the LAP (leucine-rich repeat and PDZ domain) family of scaffolding proteins that play important roles in orchestrating cell signaling. Here, we show that Erbin functions as a tumor suppressor in colon cancer. Analysis of Erbin expression in patient specimens reveals that Erbin is downregulated at both mRNA and protein levels in tumor tissues. Functionally, knockdown of Erbin disrupts epithelial cell polarity and increases cell proliferation in 3D culture. In addition, silencing Erbin results in an increase in the amplitude and duration of signaling through Akt and RAS/RAF pathways. Moreover, Erbin-loss induces epithelial-mesenchymal transition (EMT), which coincides with a significant increase in cell migration and invasion. Erbin interacts with KSR1 and displaces it from the RAF/MEK/ERK complex to prevent signaling propagation. Furthermore, genetic deletion of Erbin in Apc knockout mice promotes tumorigenesis and significantly reduces survival. Tumor organoids derived from Erbin/Apc double knockout mice have increased tumor initiation potential along with increased Wnt target gene expression as seen by qPCR. Collectively, the studies within this dissertation identify Erbin as a negative regulator of EMT and tumor progression by directly suppressing Akt and RAS/RAF signaling in vivo.
8

Modulation of growth factor-induced ERK signaling by the microtubule associated protein tau

Leugers, Chad Jeremy 01 May 2010 (has links)
The microtubule-associated protein tau is known for its ability to bind to and stabilize microtubules and for its ability to nucleate microtubule assembly. In neurodegenerative tauopathies such as Alzheimer's disease, tau becomes hyperphosphorylated and loses the capacity for microtubule binding, possibly contributing to microtubule destabilization and axonal degeneration. However, evidence now indicates that soluble forms of hyperphosphorylated tau might have a toxic gain of function linked to abnormal signal transduction and cell cycle events in normally post-mitotic neurons. In support of this hypothesis, tau has been found to associate with numerous signaling proteins such as tyrosine kinases, adaptor proteins, and scaffold proteins. During early brain development, fetal tau is also more phosphorylated than tau in the adult brain and weakly binds microtubules, suggesting tau has functions in addition to microtubule stabilization. The aim of this dissertation research is to investigate the possible role of tau in neuronal signaling, using tau-expressing and tau-depleted cell lines. Here, we provide evidence that during growth factor stimulation of neuronal cells, tau functions in advance of the neurite elongation stage. Tau is required for neurite initiation in a manner that does not require its microtubule binding function, and in addition, tau potentiates AP-1 transcription factor activation in response to nerve growth factor (NGF). The effect of tau on AP-1 activation is mediated through the enhanced activation of extracellular signal-regulated kinase (ERK), in response to both NGF and epidermal growth factor (EGF). We show that phosphorylation of tau at Thr231 also occurs in response to NGF and is required for tau to impact on ERK signaling, whereas the ability of tau to bind to microtubules is not required. Together, these findings indicate a new functional role for tau in neuronal signal transduction and have implications for tau function during early brain development and in neurodegenerative disease.
9

Essential Role of ERK Activation in Neurite Outgrowth Induced by α-Lipoic Acid

Wang, Xiaohui, Wang, Zhuyao, Yao, Yuzhen, Li, Jingjin, Zhang, Xiaojin, Li, Chuanfu, Cheng, Yunlin, Ding, Guoxian, Liu, Li, Ding, Zhengnian 01 May 2011 (has links)
Background: Neurite outgrowth is an important aspect of neuronal plasticity and regeneration after neuronal injury. Alpha-lipoic acid (LA) has been used as a therapeutic approach for a variety of neural disorders. We recently reported that LA prevents local anesthetics-induced neurite loss. In this study, we hypothesized that LA administration promotes neurite outgrowth. Methods: To test our hypothesis, we treated mouse neuroblastoma N2a cells and primary neurons with LA. Neurite outgrowth was evaluated by examination of morphological changes and by immunocytochemistry for α-tubulin-3. ROS production was examined, as were the phosphorylation levels of ERK and Akt. In separate experiments, we determined the effects of the inhibition of ERK or PI3K/Akt as well as ROS production on LA-induced neurite outgrowth. Results: LA promoted significantly neurite outgrowth in a time- and concentration-dependent manner. LA stimulation significantly increased the phosphorylation levels of both Akt and ERK and transiently induced ROS production. PI3K/Akt inhibition did not affect LA-induced neurite outgrowth. However, the inhibition of ERK activation completely abolished LA-induced neurite outgrowth. Importantly, the prevention of ROS production by antioxidants attenuated LA-stimulated ERK activation and completely abolished LA-promoted neurite outgrowth. Conclusion: Our data suggest that LA stimulates neurite outgrowth through the activation of ERK signaling, an effect mediated through a ROS-dependent mechanism. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
10

The role of ERK signaling in Wnt-dependent repression of cartilage during murine calvarial development.

Ibarra, Beatriz Adrianna 01 September 2021 (has links)
No description available.

Page generated in 0.1158 seconds