Return to search

The energetics of nucleotide binding to RAS proteins

Ras proteins are a special class of proteins that mediate cell growth signals. Their importance lies in the fact that they are products of a proto-oncogene. This means that under certain conditions the gene that determines its structure is altered and a mutant protein results that is involved in the transformation of normal cells to cancer cells. The actual function by which the protein acts in the signal pathway is not known. However it is known that they act as a switch, undergoing a cycle involving the exchange of guaninosine nucleotides in the binding site. This thesis uses computer simulations to study the energetics of this binding, with the long term aim of developing a drug to inhibit the transforming activity of the oncogenic protein. To begin with, a model of the protein based on a crystal structure is built. Using Molecular dynamics the motion of this model is studied. A possible mechanism by which one half of the nucleotide cycle could be induced is investigated, with the result that phosphorylation of the protein may be involved. The main part of the thesis is then devoted to using the free energy perturbation (FEP) method to calculate the difference in Gibbs binding free energy between the nucleotides in the protein. Using histamine as a model, a method of dealing with charged, flexible molecules is developed; namely the inclusion of a reaction field and comprehensive conformational analysis. The results from the associated calculations are seen to be very close to experimental data. The same procedures are then applied to the much more complex ras: nucleotide system with less successful results, the reason for which is mostly due to the restriction of limited computer resources to tackle such a problem. The conclusion is that given the resources and by using the techniques developed in this thesis, this type of calculation is a feasible way to study such systems.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:314903
Date January 1992
CreatorsWorth, Graham Alan
ContributorsRichards, William Graham
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:44524415-2f2b-4601-998c-56110f332153

Page generated in 0.0021 seconds