Return to search

Impact du stress oxydant et de l’athérosclérose sur la fonction vasculaire cérébrale au cours du vieillissement

Dans les neurones et les cellules vasculaires cérébrales, les dérivés réactifs de l’oxygène jouent un double rôle puisqu’ils peuvent avoir à la fois des effets bénéfiques, à faibles concentrations, et des effets délétères, à des concentrations élevées. Chez la souris, la circulation cérébrale se distingue des autres lits vasculaires puisque le peroxyde d’hydrogène (H2O2) est le principal médiateur endothélial relaxant endogène. L’objectif de notre première étude a été de caractériser l’implication physiologique du H2O2 dérivé de la eNOS dans la fonction endothéliale cérébrale de la souris. Nous avons voulu identifier les mécanismes impliqués dans la dilatation induite par l’augmentation de débit intra-luminal (flow-mediated dilation, FMD). La FMD est la réponse à un stimulus physiologique endothélial la plus représentative de la situation in vivo. Nous avons démontré que le H2O2, et non le monoxyde d’azote (NO), dérivant de l’activation de la eNOS cérébrale, est le principal médiateur de la FMD. Cependant, nous connaissons très peu de données sur l’évolution de la voie du H2O2 au cours du vieillissement qu’il soit associé ou non aux facteurs de risque pour les maladies cardiovasculaires.
Au cours du vieillissement, au niveau périphérique, les facteurs endothéliaux constricteurs ou dilatateurs évoluent en fonction de l’augmentation de stress oxydant. La présence de facteurs de risque pour les maladies cardiovasculaires, telle que l’hypercholestérolémie, pourrait accentuer l’augmentation du stress oxydant et ainsi accélérer la dysfonction endothéliale. Au niveau cérébral, très peu de données sont disponibles. Dans le cadre de notre deuxième étude, nous avons émis l’hypothèse qu’un débalancement des facteurs endothéliaux pourrait être à l’origine (1) de la dysfonction endothéliale cérébrale observée au cours du vieillissement et (2) de la dysfonction endothéliale précoce qui apparaît en présence d’athérosclérose. Nos résultats ont montré que l’augmentation de stress oxydant associée au vieillissement conduit à une libération endogène accrue de TXA2 qui diminue la voie du H2O2 au niveau cérébral et, par conséquent, réduit la dilatation dépendante de l’endothélium. De plus, la présence d’athérosclérose accélère l’apparition de la dysfonction endothéliale cérébrale. Le rôle clé joué par le stress oxydant a été confirmé par un traitement préventif avec l’antioxydant
catéchine qui a permis de renverser tous les effets délétères de l’athérosclérose sur les fonctions endothéliales cérébrales.
Finalement, la dysfonction endothéliale cérébrale précoce, associée avec l’athérosclérose, pourrait non seulement augmenter l’incidence de développer des accidents vasculaires cérébraux (AVC) mais aussi induire une diminution du débit sanguin cérébral et, ultimement, affecter les fonctions neuronales. Dans le cadre de notre troisième étude, nous avons émis l’hypothèse que l’augmentation de stress oxydant est associée avec une diminution du débit sanguin cérébral et un déclin subséquent des fonctions cognitives. Nous avons utilisé des souris athérosclérotiques âgées de 3 mois que nous avons soumises, ou pas, à un traitement chronique à la catéchine. Nos travaux montrent qu’un traitement préventif avec la catéchine peut prévenir les effets néfastes de l’athérosclérose sur la FMD, le débit sanguin et le déclin des fonctions cognitives qui est normalement associé au vieillissement.
Nos résultats ont permis de distinguer l’effet du vieillissement des effets de l’athérosclérose sur les fonctions vasculaires cérébrales. Le traitement préventif avec la catéchine a eu des effets bénéfiques marqués sur la fonction endothéliale cérébrale, le débit sanguin cérébral et les fonctions cognitives, démontrant le rôle clé de l’environnement redox dans la régulation des fonctions cérébrales. / Reactive oxygen species can have different roles in neurons and cerebral vascular cells as low concentrations are beneficial while unlikable effects are observed at higher concentrations. Mice cerebral circulation is different from other vascular beds as hydrogen peroxide (H2O2) is a major endogenous endothelium-derived relaxing factor. The objective of our first study was to characterize the physiological implication of H2O2 derived from eNOS activation in mice cerebral arteries. We tried to identify the mechanisms implicated in flow-mediated dilation (FMD), the most physiological reactive endothelial function. Our study suggested that H2O2, but not nitric oxide, derived from cerebral eNOS activity was the main factor implicated in the regulation of FMD. However, the evolution of this dilatory pathway through ageing associated or not with risk factors for cardiovascular diseases is poorly understood.
Ageing is associated with increase oxidative stress and endothelial dysfunction, the later characterized by an imbalance in the release of endothelial constricting and relaxing factors. Risk factors for cardiovascular diseases, such as hypercholesterolemia, can increase oxidative stress and could hasten endothelial dysfunction. However, the evolution of the endothelial factors through ageing, particularly H2O2 dilatory pathway, in the cerebral circulation is still not well described. In our second study, we hypothesise that alterations in endothelial factors might be responsible for (1) cerebral endothelial dysfunction observed during ageing and (2) the accelerated endothelial dysfunction associated with atherosclerosis. Our results suggested that increased in oxidative stress associated with ageing leads to the release of endogenous TXA2, which in turn, reduces eNOS activity and, consequently, reduces endothelial-dependent dilation. Furthermore, we found that oxidative stress increase associated with atherosclerosis hastens cerebral endothelial dysfunction in mice. The implication of oxidative stress was confirmed by the beneficial effect of the antioxidant catechin on atherosclerosis associated cerebral endothelial function.
Finally, premature cerebral endothelial dysfunction observed during atherosclerosis could not only be associated with increase stroke incidence but also associated with a reduction in cerebral blood flow and, ultimately, a decrease in cognitive function. For our third study, we hypothesise that oxidative stress increase during atherosclerosis is associated with reduced cerebral blood flow and an accelerated cognitive function decline normally associated with ageing. We treated 3 month-old atherosclerotic mice with the antioxidant catechin and used untreated mice as controls. Our results suggested that catechin treatment can prevent the decrease in FMD, the decrease in cerebral blood flow and cognitive function decline observed during atherosclerosis.
Taken together, our study allows to distinguish the effect of ageing and atherosclerosis on cerebrovascular function. Catechin treatment had beneficial effects on endothelial dilation, cerebral blood flow and cognitive function suggesting that the redox environment is a key player in the regulation of cerebral function.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/4240
Date10 1900
CreatorsDrouin, Annick
ContributorsThorin, Éric
Source SetsUniversité de Montréal
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0023 seconds