Return to search

Impacts de la gestion du rayonnement solaire sur le système Terre et rôle des boucles de rétroaction liées au cycle du carbone

Le rapport spécial du GIEC (SR1.5) publié en octobre 2018 est sans équivoque. Avec un réchauffement global d'environ 1°C en 2017 par rapport au début de l'ère industrielle et une teneur de CO2 dans l'atmosphère de 400 parties par million, l'Homme a d'ores et déjà modifié substantiellement le climat. L'évaluation de scénarios climatiques à bas niveau d'émissions limitant le réchauffement global à venir en deçà de 2°C montre que nous sommes désormais face à un défi scientifique, technique et civilisationnel sans précédent. Le GIEC stipule que chaque année perdue en matière d'atténuation rend un peu plus plausible la perspective d'une véritable "catastrophe" climatique. Dans ce contexte alarmant, les techniques de modification du rayonnement solaire sont de plus en plus étudiées comme une alternative à court terme pouvant limiter les impacts liés à la hausse de la température globale, en attendant la mise en œuvre et/ou la faisabilité de techniques d'atténuation suffisamment efficaces. La modélisation du système Terre reste à ce jour le seul moyen d'étudier dans quelles mesures ces techniques pourraient effectivement s'insérer dans la lutte contre le changement climatique. Le but principal de cette thèse est de quantifier et de réduire les incertitudes quant à la réponse des modèles aux simulations de géo-ingénierie de type modification du rayonnement solaire, en accordant une attention toute particulière aux effets collatéraux sur les cycles de l'eau et du carbone. Dans un premier temps, nous avons exploité les simulations existantes du projet GeoMIP, et avons identifié une relation statistique émergente entre le refroidissement obtenu dans les simulations de modification du rayonnement solaire, et le refroidissement induit par les éruptions volcaniques majeures dans les simulations historiques. Sur la base de plusieurs jeux d'observations, nous avons évalué la réponse des modèles aux éruptions et ainsi contraint la réponse à la modification du rayonnement solaire, réduisant son efficacité potentielle de 20% et l'incertitude associée de 40%. Par la suite, nous nous sommes intéressés à la réponse du cycle du carbone et avons montré que les changements climatiques induits par cette forme de géo-ingénierie tendent à stimuler les puits de carbone continentaux et océaniques. Nous avons cependant pointé l'incertitude qui entoure les processus responsables de cette augmentation, et également la réversibilité du cycle du carbone en cas d'arrêt de la géo-ingénierie. Malgré le renforcement des puits naturels de carbone, ce dernier résultat confirme que cette forme de géo-ingénierie ne peut être considérée comme une technique d'atténuation du fait de la non pérennité du stockage additionnel des émissions anthropiques de carbone dans les réservoirs océanique et terrestre. Enfin, nous nous sommes intéressés à d'autres sources d'incertitudes, liées au choix du protocole expérimental ou du modèle mis en oeuvre. Nous avons en particulier mis en lumière l’influence potentielle de la stratosphère et de son couplage avec la circulation troposphérique sur la réponse régionale des modèles à nos latitudes.

Identiferoai:union.ndltd.org:univ-toulouse.fr/oai:oatao.univ-toulouse.fr:24034
Date03 December 2018
CreatorsPlazzotta, Maxime
ContributorsInstitut National Polytechnique de Toulouse - INPT (FRANCE), Groupe d'étude de l'atmosphère météorologique - CNRM-GAME (Toulouse, France)
Source SetsUniversité de Toulouse
LanguageFrench
Detected LanguageFrench
TypePhD Thesis, PeerReviewed, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf, application/pdf
Rightsinfo:eu-repo/semantics/openAccess
Relationhttp://oatao.univ-toulouse.fr/24034/

Page generated in 0.0023 seconds