• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impacts de la gestion du rayonnement solaire sur le système Terre et rôle des boucles de rétroaction liées au cycle du carbone

Plazzotta, Maxime 03 December 2018 (has links) (PDF)
Le rapport spécial du GIEC (SR1.5) publié en octobre 2018 est sans équivoque. Avec un réchauffement global d'environ 1°C en 2017 par rapport au début de l'ère industrielle et une teneur de CO2 dans l'atmosphère de 400 parties par million, l'Homme a d'ores et déjà modifié substantiellement le climat. L'évaluation de scénarios climatiques à bas niveau d'émissions limitant le réchauffement global à venir en deçà de 2°C montre que nous sommes désormais face à un défi scientifique, technique et civilisationnel sans précédent. Le GIEC stipule que chaque année perdue en matière d'atténuation rend un peu plus plausible la perspective d'une véritable "catastrophe" climatique. Dans ce contexte alarmant, les techniques de modification du rayonnement solaire sont de plus en plus étudiées comme une alternative à court terme pouvant limiter les impacts liés à la hausse de la température globale, en attendant la mise en œuvre et/ou la faisabilité de techniques d'atténuation suffisamment efficaces. La modélisation du système Terre reste à ce jour le seul moyen d'étudier dans quelles mesures ces techniques pourraient effectivement s'insérer dans la lutte contre le changement climatique. Le but principal de cette thèse est de quantifier et de réduire les incertitudes quant à la réponse des modèles aux simulations de géo-ingénierie de type modification du rayonnement solaire, en accordant une attention toute particulière aux effets collatéraux sur les cycles de l'eau et du carbone. Dans un premier temps, nous avons exploité les simulations existantes du projet GeoMIP, et avons identifié une relation statistique émergente entre le refroidissement obtenu dans les simulations de modification du rayonnement solaire, et le refroidissement induit par les éruptions volcaniques majeures dans les simulations historiques. Sur la base de plusieurs jeux d'observations, nous avons évalué la réponse des modèles aux éruptions et ainsi contraint la réponse à la modification du rayonnement solaire, réduisant son efficacité potentielle de 20% et l'incertitude associée de 40%. Par la suite, nous nous sommes intéressés à la réponse du cycle du carbone et avons montré que les changements climatiques induits par cette forme de géo-ingénierie tendent à stimuler les puits de carbone continentaux et océaniques. Nous avons cependant pointé l'incertitude qui entoure les processus responsables de cette augmentation, et également la réversibilité du cycle du carbone en cas d'arrêt de la géo-ingénierie. Malgré le renforcement des puits naturels de carbone, ce dernier résultat confirme que cette forme de géo-ingénierie ne peut être considérée comme une technique d'atténuation du fait de la non pérennité du stockage additionnel des émissions anthropiques de carbone dans les réservoirs océanique et terrestre. Enfin, nous nous sommes intéressés à d'autres sources d'incertitudes, liées au choix du protocole expérimental ou du modèle mis en oeuvre. Nous avons en particulier mis en lumière l’influence potentielle de la stratosphère et de son couplage avec la circulation troposphérique sur la réponse régionale des modèles à nos latitudes.
2

Impacts de la gestion du rayonnement solaire sur le système Terre et rôle des boucles de rétroaction liées au cycle du carbone / Impacts of solar radiation management on the Earth system and influence of carbon cycle feedbacks.

Plazzotta, Maxime 03 December 2018 (has links)
Le rapport spécial du GIEC (SR1.5) publié en octobre 2018 est sans équivoque. Avec un réchauffement global d'environ 1°C en 2017 par rapport au début de l'ère industrielle et une teneur de CO2 dans l'atmosphère de 400 parties par million, l'Homme a d'ores et déjà modifié substantiellement le climat. L'évaluation de scénarios climatiques à bas niveau d'émissions limitant le réchauffement global à venir en deçà de 2°C montre que nous sommes désormais face à un défi scientifique, technique et civilisationnel sans précédent. Le GIEC stipule que chaque année perdue en matière d'atténuation rend un peu plus plausible la perspective d'une véritable "catastrophe" climatique. Dans ce contexte alarmant, les techniques de modification du rayonnement solaire sont de plus en plus étudiées comme une alternative à court terme pouvant limiter les impacts liés à la hausse de la température globale, en attendant la mise en œuvre et/ou la faisabilité de techniques d'atténuation suffisamment efficaces. La modélisation du système Terre reste à ce jour le seul moyen d'étudier dans quelles mesures ces techniques pourraient effectivement s'insérer dans la lutte contre le changement climatique. Le but principal de cette thèse est de quantifier et de réduire les incertitudes quant à la réponse des modèles aux simulations de géo-ingénierie de type modification du rayonnement solaire, en accordant une attention toute particulière aux effets collatéraux sur les cycles de l'eau et du carbone. Dans un premier temps, nous avons exploité les simulations existantes du projet GeoMIP, et avons identifié une relation statistique émergente entre le refroidissement obtenu dans les simulations de modification du rayonnement solaire, et le refroidissement induit par les éruptions volcaniques majeures dans les simulations historiques. Sur la base de plusieurs jeux d'observations, nous avons évalué la réponse des modèles aux éruptions et ainsi contraint la réponse à la modification du rayonnement solaire, réduisant son efficacité potentielle de 20% et l'incertitude associée de 40%. Par la suite, nous nous sommes intéressés à la réponse du cycle du carbone et avons montré que les changements climatiques induits par cette forme de géo-ingénierie tendent à stimuler les puits de carbone continentaux et océaniques. Nous avons cependant pointé l'incertitude qui entoure les processus responsables de cette augmentation, et également la réversibilité du cycle du carbone en cas d'arrêt de la géo-ingénierie. Malgré le renforcement des puits naturels de carbone, ce dernier résultat confirme que cette forme de géo-ingénierie ne peut être considérée comme une technique d'atténuation du fait de la non pérennité du stockage additionnel des émissions anthropiques de carbone dans les réservoirs océanique et terrestre. Enfin, nous nous sommes intéressés à d'autres sources d'incertitudes, liées au choix du protocole expérimental ou du modèle mis en oeuvre. Nous avons en particulier mis en lumière l’influence potentielle de la stratosphère et de son couplage avec la circulation troposphérique sur la réponse régionale des modèles à nos latitudes. / The IPCC Special Report (SR1.5) published in October 2018 is unequivocal. Global warming reached 1°C above preindustrial level in 2017 and atmospheric concentrations of CO2 passed 400 parts per million. Human activities have already substantially altered the Earth's climate. The assessment of low emission scenarios that limit global warming to 2°C above preindustrial levels shows that we are now facing an unprecedented scientific, technological and civilizational challenge, and stipulates that each year lost for mitigation makes the prospect of a real climate "disaster" a little more plausible. In this alarming context, solar radiation modification techniques are increasingly studied as a short-term alternative in order to limit the impacts of dangerous global warming, before the implementation and/or feasibility of sufficiently effective mitigation techniques. Earth System Models remain the only tool to investigate the extent to which these techniques could be used to counteract global warming. The main purpose of this thesis is to quantify and narrow uncertainties in model response to geoengineering simulations such as solar radiation modification, with special attention to side-effects on water and carbon cycles. First, we have used available simulations from GeoMIP, and identified an emerging statistical link between the cooling obtained in solar radiation management simulations, and the cooling induced by major volcanic eruptions in the historical simulations. Using several observational datasets, we have evaluated the model response to volcanic eruptions and, thereby, constrained the response to this geoengineering technique, reducing its potential cooling efficiency by 20%, and the associated uncertainty by 40%. Subsequently, we have focused on the carbon cycle response and have shown that climatic changes induced by this form of geoengineering tends to stimulate continental and oceanic carbon sinks. However, we have pointed out the uncertainty surrounding the processes responsible for this increase, and also the reversibility of the carbon cycle in case of stopping geoengineering. Despite the enhancement of the natural carbon sinks, this last result confirms that this form of geoengineering cannot be considered as a mitigation technique because of the unsustainability of the additional storage of anthropogenic carbon emissions into ocean and terrestrial reservoirs. Finally, we have looked at other sources of uncertainty related to the choice of the implemented experiment design or model. We have in particular highlighted the potentiel influence of the stratosphere and its coupling with the tropospheric dynamics on the regional response in the northern midlatitudes.
3

Climate engineering with stratospheric sulphate aerosol : development and application of a global atmosphere-aerosol model for studying potential efficacy and impacts / Génie climatique avec aérosol de sulfate stratosphérique : l'élaboration et l'application d'un modèle global atmosphère-aérosol pour l'étude de l'efficacité et des impacts potentiels

Kleinschmitt, Christoph 21 December 2017 (has links)
L'augmentation artificielle de la couche stratosphérique d'aérosol de sulfate a été proposée comme méthode pour réduire le réchauffement climatique causé par les émissions anthropiques de gaz à effet de serre. Dans cette thèse, nous présentons un modèle global atmosphère-aérosol nouvellement développé, évaluons sa performance par rapport aux observations et l'appliquons pour étudier l'efficacité et les impacts de cette forme possible d'ingénierie climatique. Nous trouvons que l'effet de refroidissement réalisable par unité de masse de soufre injectée peut diminuer de façon plus drastique qu'estimé précédemment pour des taux d'injection élevés et que des injections à plus haute altitude ou dans des régions plus grandes n'entraînent pas un refroidissement plus fort. L'efficacité de la méthode pourrait donc être plutôt limitée, tout au moins dans les cas d'injections tropicales de dioxyde de soufre que nous avons modélisées. Par ailleurs, il existe plusieurs effets secondaires potentiellement nocifs, tels que le chauffage stratosphérique dû à l'absorption de rayonnement par l'aérosol provoquant de fortes perturbations dans la dynamique atmosphérique, la composition chimique de la stratosphère et les nuages hauts. Enfin, nous trouvons que les effets radiatifs de l'injection d'aérosol stratosphérique et de l'éclaircissement des nuages marins, une autre technique de géo-ingénierie proposée, seraient largement additifs et complémentaires lors de leur application parallèle. Cela pourrait permettre de concevoir un port-folio d'approches pour atteindre des objectifs climatiques spécifiques et réduire les effets secondaires indésirables de l'ingénierie climatique. / The enhancement of the stratospheric sulphate aerosol layer has been proposed as a method to abate the global warming caused by anthropogenic greenhouse gas emissions. In this thesis we present a newly developed global atmosphere-aerosol model, evaluate its performance against observations, and apply it to study the effectiveness and impacts of this possible form of climate engineering. We find that the achievable cooling effect per injected sulphur mass unit may decrease more drastically for larger injections than previously estimated and that injections at higher altitude or over larger areas do not result in a stronger cooling. The effectiveness of the method may therefore be rather limited, at least when using tropical injections of sulphur dioxide as in our model experiments. In addition, there are several potentially harmful side effects, such as stratospheric heating due to absorption of radiation by the aerosol causing strong perturbations in atmospheric dynamics, composition, and high-level clouds. Furthermore, we find that the radiative effects of stratospheric aerosol injection and marine cloud brightening, another proposed geoengineering technique, would be largely additive and complementary when applying them together. This might allow the design of portfolio approaches to achieve specific climate goals and reduce unintended side effects of climate engineering.

Page generated in 0.0422 seconds