Return to search

Eléments finis stochastiques : approches intrusive et non intrusive pour des analyses de fiabilité

La méthode des éléments finis stochastiques (MEFS) a été développée pour modéliser l'aléa sous la forme de variables aléatoires de type quelconque dans le cadre de la mécanique linéaire élastique. Elle consiste à écrire les composantes de la réponse aléatoire du système sous la forme d'une série polynomiale de variables aléatoires (baptisée chaos polynomial), dont les coefficients sont obtenus par une méthode de type Galerkin. Le champ d'application de cette méthode étant limité, de nouvelles méthodes, dites non intrusives, permettant le calcul du développement de la réponse dans la base du chaos polynomial ont été recherchées.<br />Les méthodes MEFS et non intrusive ont été testées et comparées sur des exemples de mécanique élastique linéaire. Enfin les approches non intrusives ont été utilisées dans un cas de mécanique de la rupture non linéaire.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00366225
Date18 October 2005
CreatorsBerveiller, Marc
PublisherUniversité Blaise Pascal - Clermont-Ferrand II
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0028 seconds