L’utilisation de platelages en aluminium dans les ponts est récente et peu répandue comparativement aux matériaux plus traditionnels tels que l’acier et le béton. Malgré l’introduction récente du chapitre 17 dans la norme canadienne des ponts routiers (CAN/CSA-S6) sur l’utilisation de l’aluminium structural dans les ponts, les connaissances concernant le comportement structural du platelage en aluminium restent limitées. Ainsi, les spécifications du code pour la conception ne fournissent pas des méthodologies suffisantes pour les vérifications de la résistance et de l’état limite d’utilisation. Par exemple, le calcul des fractions de charge de camion à l’aide de la méthode simplifiée pour la distribution transversale dans les platelages en aluminium est basé sur des valeurs spécifiées pour les platelages en madrier de bois, ce qui semble restrictif. Un autre exemple concret est lié au calcul du moment plastique qui permet d’établir la résistance du pont en flexion. La méthode simplifiée de calcul de la largeur effective dans le cas où il y aurait action composite n’est pas adaptée pour un platelage ayant une section alvéolée comme c’est le cas du platelage en aluminium. Une analyse utilisant les méthodes d'éléments finis est nécessaire pour établir ces paramètres de conception. Dans ce mémoire, une étude de la répartition transversale des charges de trafic pour des dispositions d’extrusions longitudinales et transversales par rapport aux poutres en acier est effectuée à l’aide de la méthode des éléments finis. Plusieurs modèles de ponts sont réalisés afin d’étudier l’influence de la portée et de l’espacement des poutres sur les fractions de charge de camion ainsi que sur l’aire effective du platelage dans le cas d’action composite parfaite. Une comparaison avec les valeurs préconisées par la norme CAN/CSA-S6-14 ainsi qu’une comparaison entre les deux types de dispositions sont également effectuées. Il a été déterminé que la norme surestime grandement les valeurs des fractions de charge de camion, allant jusqu’à une surestimation de 25% à 40%. De plus, il s’est avéré que les fractions de charge de camion calculées pour les modèles ayant les extrusions transversales aux poutres étaient toujours inférieures à celles calculées pour les modèles ayant les extrusions installées longitudinalement aux poutres. Pour ce qui est des résultats concernant l’aire effective, les valeurs obtenues avec les extrusions parallèles aux poutres étaient plus basses que celles obtenues avec les extrusions transversales. Enfin, lors de la comparaison avec les valeurs de la norme pour un platelage en béton, les aires effectives trouvées à l’aide des modèles étaient toujours inférieures à celles de la norme. / The use of aluminium decks in bridges has received attention in recent years, as the bridge engineering community discovers the advantages of this material compared with the traditional construction materials such as steel and concrete. Despite the recent introduction of Chapter 17 in the Canadian Highway Bridge Design Code, CAN/CSA S6, which permits engineers to use aluminium for bridge construction, the structural design application still remains a daunting task. Essentially, the code’s specifications for design do not provide concise and detailed methodologies for strength and serviceability verifications. As an example, for the simplified traffic load analysis, it appears that the factors for transverse distribution of traffic loads specified for aluminium bridge decks are based on values specified for wood plank decks, which appears insufficient. Another practical example relates to the determination of the plastic moment required to establish the bending moment capacity for the bridge section. Considering that a bridge deck solution in aluminium consists of a multi-cellular section made from extrusions, the application of the simplified method in determining the effective width of the deck section becomes a non-trivial task. A refined analysis using finite element methods is required to establish these design parameters for an optimized bridge solution in aluminium. In the present study, a finite element analysis is carried out to investigate the transverse distribution of traffic load on aluminium decks made from longitudinal and transverse extrusions, supported by steel girders. A number of bridge models are developed to study the influence of girder spacing and bridge span on the truck load fraction for aluminium decks and for establishing the effective area for the composite aluminium deck with steel girder system. It was determined that the code largely overestimates the values of truck load fractions, up to 25% to 40%. In addition, it was found that the truck load fractions calculated for models with transverse extrusion arrangements were always lower than those calculated for models with longitudinal extrusion. The transverse arrangement is therefore more effective in transferring truck loads to supporting girders. With respect to the effective area, the study showed that these values were lower for longitudinal extrusions than transverse extrusions. Finally, when compared with the values obtained using the simplified method by the code for a concrete deck, the effective areas determined were lower than those obtained from the code.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/33614 |
Date | 16 February 2019 |
Creators | St-Gelais, Catherine |
Contributors | Annan, Charles-Darwin, Fafard, Mario |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (xxi, 163 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0028 seconds