Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas. Programa de Pós-Graduação em Matemática e Computação Científica. / Made available in DSpace on 2012-10-23T07:18:50Z (GMT). No. of bitstreams: 1
235906.pdf: 730825 bytes, checksum: 25d5e053cb093d9fd481ef9ec6be7b74 (MD5) / Neste trabalho, apresentamos resultados de estabilidade e análise de convergência dos métodos Chebyshev-espectrais para equações diferenciais parciais parabólicas. Abordamos a teoria dos métodos Fourier-espectrais considerando apenas os resultados necessários ao desenvolvimento da teoria dos métodos Chebyshev-espectrais. A existência e unicidade de soluções foram obtidas através do método Faedo-Galerkin. Estabelecemos resultados de estabilidade e convergência de esquemas semi-discretos e totalmente discretos para as equações de advecção-difusão (uni e bidimensional) e do calor bidimensional. No caso de esquemas totalmente discretos, utilizamos o método implícito teta, com teta entre 1/2 e 1, para avançar no tempo. A taxa de convergência é espectral com relação ao espaço e polinomial no tempo (segunda ordem para teta pertencente a (1/2,1] e quarta ordem para teta=1/2).
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufsc.br:123456789/90217 |
Date | January 2007 |
Creators | Travessini, Fabiana |
Contributors | Universidade Federal de Santa Catarina, Oliveira, Jáuber Cavalcante de |
Publisher | Florianópolis, SC |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFSC, instname:Universidade Federal de Santa Catarina, instacron:UFSC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds