Return to search

Chemical Genetic Interrogation of Neural Stem Cells: Phenotype and Function of Neurotransmitter Pathways in Normal and Brain Tumor Initiating Neural Precursor Cells

The identification of self-renewing and multipotent neural stem cells (NSCs) in the mammalian brain brings promise for the treatment of neurological diseases and has yielded new insight into brain cancer. The complete repertoire of signaling pathways that governs these cells however remains largely uncharacterized. This thesis describes how chemical genetic approaches can be used to probe and better define the operational circuitry of the NSC. I describe the development of a small molecule chemical genetic screen of NSCs that uncovered an unappreciated precursor role of a number of neurotransmitter pathways commonly thought to operate primarily in the mature central nervous system (CNS). Given the similarities between stem cells and cancer, I then translated this knowledge to demonstrate that these neurotransmitter regulatory effects are also conserved within cultures of cancer stem cells. I then provide experimental and epidemiologically support for this hypothesis and suggest that neurotransmitter signals may also regulate the expansion of precursor cells that drive tumor growth in the brain. Specifically, I first evaluate the effects of neurochemicals in mouse models of brain tumors. I then outline a retrospective meta-analysis of brain tumor incidence rates in psychiatric patients presumed to be chronically taking neuromodulators similar to those identified in the initial screen. Lastly, by further exploring the phenotype and function of neurotransmitter pathways in purified populations of human NSCs, I determined that neurotransmitter pathway gene expression exists in a functionally heterogeneous phase-varying state that restricts the responsiveness of these populations to various stimuli. Taken together, this research provides novel insights into the phenotypic and functional landscape of neurotransmitter pathways in both normal and cancer-derived NSCs. In additional to a better fundamental understanding of NSC biology, these results suggest how clinically approved neuromodulators can be used to remodel the mature CNS and find application in the treatment of brain cancer.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/24738
Date06 August 2010
CreatorsDiamandis, Phedias
ContributorsTyers, Michael D., Dirks, Peter Benjamin
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds