Through the years, cancer therapies have progressed rapidly, pouring out novel treatments such as gene therapy, small molecule therapies and immunotherapy. One such immunotherapy, adoptive cell transfer (ACT), augmented through the addition of a chimeric antigen receptor (CAR), has proven success in treatment of hematological malignancies. Additionally, oncolytic viruses (OV) and OV-based (OVV) therapies, have shown promising results in both clinical and pre-clinical studies. In most instances, when applied as a monotherapy, the aforementioned treatment methods are incapable of inducing complete tumour remission. The Wan lab has developed an approach combining ACT with OVV therapies that dramatically increase therapeutic benefit resulting in complete regression of well-established solid tumours. Despite promising results, certain tumours can still escape this combination therapy through antigen loss resulting in antigen negative relapse (ANR). To further augment the therapy, the addition of a secondary receptor (CAR) provides the ACT multiple avenues of attack to prevent ANR. In this dissertation, we define culture conditions that promote strong expression of the CAR alongside confirmation of function in an in vitro setting. Following, it is demonstrated that OVV boosted dual-targeting T cells carry strong T cell activity by measure of cytokine release in vivo. Despite promising T cell activity data, dual-specific T cells are unable to improve tumour control and survival once relapse occurs. The failure to control relapse remains unclear however evidence points towards lack of T cell persistence, poor CAR function in vivo and a lack of endogenous T cell response leading to compounding effects that prevent dual-targeting T cells from preventing ANR. Although dual specific therapies have shown poor efficacy in preventing ANR, further study must be completed to identify areas of improvement – such as persistence, as the potential for success in using dual-targeting T cells coupled with OVVs still lies untapped. / Thesis / Master of Science (MSc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/26698 |
Date | January 2021 |
Creators | Fisher, Robert |
Contributors | Wan, Yonghong, Medical Sciences |
Source Sets | McMaster University |
Detected Language | English |
Type | Thesis |
Page generated in 0.0033 seconds