Return to search

Heat transfer characteristics of natural convection within an enclosure using liquid cooling system

In this investigation, a single phase fluid is used to study the coupling between natural convection heat transfer within an enclosure and forced convection through computer covering case to cool the electronic chip. Two working fluids are used (water and air) within a rectangular enclosure and the air flow through the computer case is created by an exhaust fan installed at the back of the computer case. The optimum enclosure size configuration that keeps a maximum temperature of the heat source at a safe temperature level (85°C) is determined. The cooling system is tested for varying values of applied power in the range of 15-40W. The study is based on both numerical models and experimental observations. The numerical work was developed using the commercial software (ANSYS-Icepak) to simulate the flow and temperature fields for the desktop computer and the cooling system. The numerical simulation has the same physical geometry as those used in the experimental investigations. The experimental work was aimed to gather the details for temperature field and use them in the validation of the numerical prediction. The results showed that, the cavity size variations influence both the heat transfer process and the maximum temperature. Furthermore, the experimental results ii compared favourably with those obtained numerically, where the maximum deviation in terms of the maximum system temperature, is within 3.5%. Moreover, it is seen that using water as the working fluid within the enclosure is capable of keeping the maximum temperature under 77°C for a heat source of 40W, which is below the recommended electronic chips temperature of not exceeding 85°C. As a result, the noise and vibration level is reduced. In addition, the proposed cooling system saved about 65% of the CPU fan power.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:681170
Date January 2015
CreatorsGdhaidh, Farouq Ali S.
PublisherUniversity of Bradford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10454/7824

Page generated in 0.0049 seconds