• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins

Gdhaidh, Farouq A.S., Hussain, Khalid, Qi, Hong Sheng 03 1900 (has links)
Yes / A numerical study of natural convection heat transfer in water filled cavity has been examined in 3-D for single phase liquid cooling system by using an array of parallel plate fins mounted to one wall of a cavity. The heat generated by a heat source represents a computer CPU with dimensions of 37.5∗37.5mm mounted on substrate. A cold plate is used as a heat sink installed on the opposite vertical end of the enclosure. The air flow inside the computer case is created by an exhaust fan. A turbulent air flow is assumed and k-ε model is applied. The fins are installed on the substrate to enhance the heat transfer. The applied power energy range used is between 15 - 40W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the number of the parallel plate fins are investigated. The results illustrate that as the fin number increases the maximum heat source temperature decreases. However, when the fin number increases to critical value the temperature start to increase due to the fins are too closely spaced and that cause the obstruction of water flow. The introduction of parallel plate fins reduces the maximum heat source temperature by 10% compared to the case without fins. The cooling system maintains the maximum chip temperature at 64.68°C when the heat input was at 40W that is much lower than the recommended computer chips limit temperature of no more than 85°C and hence the performance of the CPU is enhanced.
2

Heat transfer characteristics of natural convection within an enclosure using liquid cooling system

Gdhaidh, Farouq Ali S. January 2015 (has links)
In this investigation, a single phase fluid is used to study the coupling between natural convection heat transfer within an enclosure and forced convection through computer covering case to cool the electronic chip. Two working fluids are used (water and air) within a rectangular enclosure and the air flow through the computer case is created by an exhaust fan installed at the back of the computer case. The optimum enclosure size configuration that keeps a maximum temperature of the heat source at a safe temperature level (85°C) is determined. The cooling system is tested for varying values of applied power in the range of 15-40W. The study is based on both numerical models and experimental observations. The numerical work was developed using the commercial software (ANSYS-Icepak) to simulate the flow and temperature fields for the desktop computer and the cooling system. The numerical simulation has the same physical geometry as those used in the experimental investigations. The experimental work was aimed to gather the details for temperature field and use them in the validation of the numerical prediction. The results showed that, the cavity size variations influence both the heat transfer process and the maximum temperature. Furthermore, the experimental results ii compared favourably with those obtained numerically, where the maximum deviation in terms of the maximum system temperature, is within 3.5%. Moreover, it is seen that using water as the working fluid within the enclosure is capable of keeping the maximum temperature under 77°C for a heat source of 40W, which is below the recommended electronic chips temperature of not exceeding 85°C. As a result, the noise and vibration level is reduced. In addition, the proposed cooling system saved about 65% of the CPU fan power.
3

Heat Transfer Characteristics of Natural Convection within an Enclosure Using Liquid Cooling System.

Gdhaidh, Farouq A.S. January 2015 (has links)
In this investigation, a single phase fluid is used to study the coupling between natural convection heat transfer within an enclosure and forced convection through computer covering case to cool the electronic chip. Two working fluids are used (water and air) within a rectangular enclosure and the air flow through the computer case is created by an exhaust fan installed at the back of the computer case. The optimum enclosure size configuration that keeps a maximum temperature of the heat source at a safe temperature level (85℃) is determined. The cooling system is tested for varying values of applied power in the range of 15−40𝑊. The study is based on both numerical models and experimental observations. The numerical work was developed using the commercial software (ANSYS-Icepak) to simulate the flow and temperature fields for the desktop computer and the cooling system. The numerical simulation has the same physical geometry as those used in the experimental investigations. The experimental work was aimed to gather the details for temperature field and use them in the validation of the numerical prediction. The results showed that, the cavity size variations influence both the heat transfer process and the maximum temperature. Furthermore, the experimental results ii compared favourably with those obtained numerically, where the maximum deviation in terms of the maximum system temperature, is within 3.5%. Moreover, it is seen that using water as the working fluid within the enclosure is capable of keeping the maximum temperature under 77℃ for a heat source of 40𝑊, which is below the recommended electronic chips temperature of not exceeding 85℃. As a result, the noise and vibration level is reduced. In addition, the proposed cooling system saved about 65% of the CPU fan power.

Page generated in 0.0577 seconds