Return to search

Zero-cycles and constant cycle subvarieties in Calabi-Yau and hyper-Kähler varieties / Zéro-cycle et cycle constant subvariétés dans les variétés Calabi-Yau et hyper-Kähler

Nous présentons trois résultats dans cette thèse. Dans le chapitre 2 nous montrons l’existence d’un zéro-cycle cx sur une hypersurface X de type Calabi–Yau dans une varieté homogène projective complexe. Plus précisement, nous montrons que l’intersection de n diviseurs sur X, où n = dim X, est proportionnelle à la classe d’un point supporté sur une courbe rationnelle dans X. Dans le chapitre 3 nous donnons une nouvelle preuve du théorème de Beauville et Voisin portant sur la décomposition de la petite diagonale d’une surface K3 notée S. La preuve que nous donnons est explicite et utilise le plongement de degré 2g-2 de S dans l’espace projectif de la dimension g. Elle est différente de celle donnée par Beauville et Voisin, qui repose sur l’existence d’une famille à un paramètre de courbes elliptiques. Le chapitre 4 est consacré à l’étude des similitudes entre la variété de Fano des droites d’une cubique de dimension 4, qui est une variété hyper-Kählerienne étudiée par Beauville et Donagi, et la variété hyper-Kählerienne de dimension 4 construite par Debarre et Voisin dans [11]. Nous introduisons un analogue de la notion de triangle pour ces variétés et prouvons que la variété des triangles, qui est de dimension 6, est une sous-variété Lagrangienne du cube de la variété hyper-Kählerienne construite par Debarre et Voisin. / We present in this thesis three results. In Chapter 2 we prove the existence of a canonical zero-cycle cX on a Calabi–Yau hypersurfacee X in a complex projective homogeneous variety. Namely, we show that the intersection of any n divisors on X , n = dim X is proportional to the class of a point on a rational curve in X. In Chapter 3 we give a new proof of the theorem of Beauville and Voisin about the decomposition of the small diagonal of a K3 surface S. Our proof is explicit and uses the degree 2g-2 embedding of S in projective space of dimension g. It is different from the one used by Beauville and Voisin, which employed the existence of one-parameters familie of elliptic curves. Chapter 4 is devoted to the study of similarities between the Fano varieties of lines on a cubic fourfold, a hyper-Kähler fourfold studied by Beauville and Donagi, and the hyper-Kähler fourfold constructed by Debarre and Voisin in [11]. We exhibit an analog of the notion of "triangle" for these varieties and prove that the 6-dimensional variety of "triangles" is a Lagrangian subvariety in the cube of the constructed hyper-Kähler fourfold.

Identiferoai:union.ndltd.org:theses.fr/2017PA066387
Date17 November 2017
CreatorsBazhov, Ivan
ContributorsParis 6, Voisin, Claire
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds