Spelling suggestions: "subject:"erocycles"" "subject:"heterocycles""
1 |
Families of cycles and the Chow schemeRydh, David January 2008 (has links)
The objects studied in this thesis are families of cycles on schemes. A space — the Chow variety — parameterizing effective equidimensional cycles was constructed by Chow and van der Waerden in the first half of the twentieth century. Even though cycles are simple objects, the Chow variety is a rather intractable object. In particular, a good functorial description of this space is missing. Consequently, descriptions of the corresponding families and the infinitesimal structure are incomplete. Moreover, the Chow variety is not intrinsic but has the unpleasant property that it depends on a given projective embedding. A main objective of this thesis is to construct a closely related space which has a good functorial description. This is partly accomplished in the last paper. The first three papers are concerned with families of zero-cycles. In the first paper, a functor parameterizing zero-cycles is defined and it is shown that this functor is represented by a scheme — the scheme of divided powers. This scheme is closely related to the symmetric product. In fact, the scheme of divided powers and the symmetric product coincide in many situations. In the second paper, several aspects of the scheme of divided powers are discussed. In particular, a universal family is constructed. A different description of the families as multi-morphisms is also given. Finally, the set of k-points of the scheme of divided powers is described. Somewhat surprisingly, cycles with certain rational coefficients are included in this description in positive characteristic. The third paper explains the relation between the Hilbert scheme, the Chow scheme, the symmetric product and the scheme of divided powers. It is shown that the last three schemes coincide as topological spaces and that all four schemes are isomorphic outside the degeneracy locus. The last paper gives a definition of families of cycles of arbitrary dimension and a corresponding Chow functor. In characteristic zero, this functor agrees with the functors of Barlet, Guerra, Kollár and Suslin-Voevodsky when these are defined. There is also a monomorphism from Angéniol's functor to the Chow functor which is an isomorphism in many instances. It is also confirmed that the morphism from the Hilbert functor to the Chow functor is an isomorphism over the locus parameterizing normal subschemes and a local immersion over the locus parameterizing reduced subschemes — at least in characteristic zero. / QC 20100908
|
2 |
Zero-cycles and constant cycle subvarieties in Calabi-Yau and hyper-Kähler varieties / Zéro-cycle et cycle constant subvariétés dans les variétés Calabi-Yau et hyper-KählerBazhov, Ivan 17 November 2017 (has links)
Nous présentons trois résultats dans cette thèse. Dans le chapitre 2 nous montrons l’existence d’un zéro-cycle cx sur une hypersurface X de type Calabi–Yau dans une varieté homogène projective complexe. Plus précisement, nous montrons que l’intersection de n diviseurs sur X, où n = dim X, est proportionnelle à la classe d’un point supporté sur une courbe rationnelle dans X. Dans le chapitre 3 nous donnons une nouvelle preuve du théorème de Beauville et Voisin portant sur la décomposition de la petite diagonale d’une surface K3 notée S. La preuve que nous donnons est explicite et utilise le plongement de degré 2g-2 de S dans l’espace projectif de la dimension g. Elle est différente de celle donnée par Beauville et Voisin, qui repose sur l’existence d’une famille à un paramètre de courbes elliptiques. Le chapitre 4 est consacré à l’étude des similitudes entre la variété de Fano des droites d’une cubique de dimension 4, qui est une variété hyper-Kählerienne étudiée par Beauville et Donagi, et la variété hyper-Kählerienne de dimension 4 construite par Debarre et Voisin dans [11]. Nous introduisons un analogue de la notion de triangle pour ces variétés et prouvons que la variété des triangles, qui est de dimension 6, est une sous-variété Lagrangienne du cube de la variété hyper-Kählerienne construite par Debarre et Voisin. / We present in this thesis three results. In Chapter 2 we prove the existence of a canonical zero-cycle cX on a Calabi–Yau hypersurfacee X in a complex projective homogeneous variety. Namely, we show that the intersection of any n divisors on X , n = dim X is proportional to the class of a point on a rational curve in X. In Chapter 3 we give a new proof of the theorem of Beauville and Voisin about the decomposition of the small diagonal of a K3 surface S. Our proof is explicit and uses the degree 2g-2 embedding of S in projective space of dimension g. It is different from the one used by Beauville and Voisin, which employed the existence of one-parameters familie of elliptic curves. Chapter 4 is devoted to the study of similarities between the Fano varieties of lines on a cubic fourfold, a hyper-Kähler fourfold studied by Beauville and Donagi, and the hyper-Kähler fourfold constructed by Debarre and Voisin in [11]. We exhibit an analog of the notion of "triangle" for these varieties and prove that the 6-dimensional variety of "triangles" is a Lagrangian subvariety in the cube of the constructed hyper-Kähler fourfold.
|
3 |
Principe local-global pour les zéro-cycles / Local-global principle for zero-cyclesLiang, Yongqi 04 October 2011 (has links)
Dans cette thèse, nous nous intéressons à l’étude de l’arithmétique (le principe de Hasse, l’approximation faible, et l’obstruction de Brauer-Manin) des zéro-cycles sur les variétés algébriques définies sur des corps de nombres. Nous introduisons la notion de sous-ensemble hilbertien généralisé. En utilisant la méthode de fibration, nous démontrons que l’obstruction de Brauer-Manin est la seule au principe de Hasse et à l’approximation faible pour les zéro-cycles de degré 1; et établissons l’exactitude d’une suite de type global-local concernant les groupes de Chow des zéro-cycles, pour certaines variétés qui admettent une structure de fibration au-dessus d’une courbe lisse ou au-dessus de l’espace projectif, où les hypothèses arithmétiques sont posées seulement sur les fibres au-dessus d’un sous-ensemble hilbertien généralisé.De plus, nous relions l’arithmétique des points rationnels et l’arithmétique des zérocycles de degré 1 sur les variétés géométriquement rationnellement connexes. Comme application, nous trouvons que l’obstruction de Brauer-Manin est la seule au principe de Hasse et à l’approximation faible pour les zéro-cycles de degré 1 sur- les espaces homogènes d’un groupe algébrique linéaire à stabilisateur connexe,- certains fibrés en surfaces de Châtelet au-dessus d’une courbe lisse ou au-dessus de l’espace projectif (en particulier, les solides de Poonen). / This Ph. D. thesis studies the arithmetic properties (the Hasse principle, the weak approximation, and the Brauer-Manin obstruction) for zero-cycles on algebraic varieties defined over number fields. We introduce the notion of generalized Hilbertian subset. By using the fibration method, we prove that the Brauer-Manin obstruction is the only obstruction tothe Hasse principle and to the weak approximation for zero-cycles of degree 1; and establish the exactness of a sequence of global-local type concerning Chow groups of zero-cycles, for certain varieties which admit a fibration structure overa smooth curve or over the projective space, where the arithmetic hypotheses are only posed on the fibers over a generalized Hilbertian subset. Moreover, we relate the arithmetic of rational points and that of zero-cycles of degree 1 on geometrically rationally connected varieties. As an application, we find that the Brauer-Manin obstruction is the only obstruction to the Hasse principle and to the weak approximation for zero-cycles of degree 1 on- homogeneous spaces of a linear algebraic group with connected stabilizer,- certain varieties fibered into Chatelet surfaces over a smooth curve or over the projective space (in particular, Poonen's threefolds).
|
Page generated in 0.0212 seconds