Return to search

Methods for Joint Normalization and Comparison of Hi-C data

The development of chromatin conformation capture technology has opened new avenues of study into the 3D structure and function of the genome. Chromatin structure is known to influence gene regulation, and differences in structure are now emerging as a mechanism of regulation between, e.g., cell differentiation and disease vs. normal states. Hi-C sequencing technology now provides a way to study the 3D interactions of the chromatin over the whole genome. However, like all sequencing technologies, Hi-C suffers from several forms of bias stemming from both the technology and the DNA sequence itself. Several normalization methods have been developed for normalizing individual Hi-C datasets, but little work has been done on developing joint normalization methods for comparing two or more Hi-C datasets. To make full use of Hi-C data, joint normalization and statistical comparison techniques are needed to carry out experiments to identify regions where chromatin structure differs between conditions.
We develop methods for the joint normalization and comparison of two Hi-C datasets, which we then extended to more complex experimental designs. Our normalization method is novel in that it makes use of the distance-dependent nature of chromatin interactions. Our modification of the Minus vs. Average (MA) plot to the Minus vs. Distance (MD) plot allows for a nonparametric data-driven normalization technique using loess smoothing. Additionally, we present a simple statistical method using Z-scores for detecting differentially interacting regions between two datasets. Our initial method was published as the Bioconductor R package HiCcompare [http://bioconductor.org/packages/HiCcompare/](http://bioconductor.org/packages/HiCcompare/).
We then further extended our normalization and comparison method for use in complex Hi-C experiments with more than two datasets and optional covariates. We extended the normalization method to jointly normalize any number of Hi-C datasets by using a cyclic loess procedure on the MD plot. The cyclic loess normalization technique can remove between dataset biases efficiently and effectively even when several datasets are analyzed at one time. Our comparison method implements a generalized linear model-based approach for comparing complex Hi-C experiments, which may have more than two groups and additional covariates. The extended methods are also available as a Bioconductor R package [http://bioconductor.org/packages/multiHiCcompare/](http://bioconductor.org/packages/multiHiCcompare/). Finally, we demonstrate the use of HiCcompare and multiHiCcompare in several test cases on real data in addition to comparing them to other similar methods (https://doi.org/10.1002/cpbi.76).

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-7047
Date01 January 2019
CreatorsStansfield, John C
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© John C Stansfield

Page generated in 0.0019 seconds