• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 10
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On key modulators of higher-order chromatin structure

Faure, André Jean January 2014 (has links)
No description available.
2

Surface mapping of the higher order structure of chromatin

Bunn, Nicholas Reynolds January 1990 (has links)
No description available.
3

Computational methods for integrating microscopy with chromatin structures

Wohlfahrt, Kai Jörg January 2018 (has links)
The genome is more than a linear sequence of bases; its spatial organisation is a key part of its function. In humans, three billion base pairs, or approximately two metres of DNA are packaged into a nucleus a few micrometres in diameter. The genome must also be organised so that it can be replicated and partitioned into daughter cells, and so that regulatory elements are positioned to affect their targets. Until recently, little was known about the organisation of the genome at the scale of single genes. The packaging of DNA onto nucleosomes, and the segregation of chromosomes into chromosome territories was well understood, but the development of chromatin conformation capture (3C) techniques has enabled the first thorough study of intermediate scales. These methods provide information about the distances between pairs of genomic loci, which gives indirect information about their positions. By applying these techniques to single cells, it has become possible to calculate a structure from the observed distance restraints. Through the prior constraints placed on the model, such as the existence of a continuous backbone, these structures provide additional information about the conformation of DNA. To overcome the limitations of 3C, it is useful to integrate additional sources of information. I present several methods for the validation and improvement of Hi-C structures by adding data from microscopy, and for characterising dyes used in single-molecule light microscopy. It is found that single-cell Hi-C structures agree with fluorescence microscopy when observing the distance of genes from the edge of the nucleus, and that centromeres are not a suitable label for direct validation. Adding absolute positional restraints from images is shown to be useful in better determining chromatin structure in synthetic tests. Finally, the presence of a FRET acceptor near a fluorescent protein is shown to improve its photophysical properties.
4

A study of loop retraction in the lampbrush chromosomes of Triturus cristatus carnifex (the Italian crested newt)

Flannery, A. V. January 1986 (has links)
No description available.
5

The role of histones and histone modifying enzymes in ribosomal dna silencing in saccharomyces cerevisiae

Li, Chonghua 15 May 2009 (has links)
In S. cerevisiae, the ribosomal DNA locus is silent for RNA polymerase II (Pol II) transcription and recombination (rDNA silencing). Our goal is to understand how histones and histone-modifying enzymes regulate the silent chromatin at the rDNA locus. Sir2, a NAD+-dependent histone deacetylase, is required for rDNA silencing. To understand how Sir2 regulates rDNA silencing, we performed chromatin immunoprecipitation to measure the association of modified histones across the rDNA repeat in wild-type and sir2Δ cells. We found that in sir2Δ cells, histone H3 at the rDNA became hyperacetylated and hypermethylated. High levels of K4-methylated H3 correlate with Pol II transcription. Consistent with this, we found that the nontranscribed spacer (NTS) region was transcribed by Pol II in sir2Δ cells. To investigate if transcription of the NTS region regulates rDNA silencing, we overexpressed this region both in trans and in cis. Our data showed that overexpression of the NTS region in cis caused Pol II silencing defect and hyperrecombination at the rDNA. These data suggest that Sir2 contributes to maintain the silent chromatin at the rDNA by repressing Pol II transcription in the NTS region. We also found that the NTS transcripts could be translated in vitro and that they copurified with polysomes, suggesting that the transcripts may encode proteins or that the transcripts are somehow involved in the process of translation. Additionally, we examined the role of linker histone H1 in regulating rDNA silencing. We found that, unlike Sir2 that represses both Pol II transcription and recombination, histone H1 only represses recombination at the rDNA. The hyperrecombination defect at the rDNA is more severe in sir2Δ hho1Δ double mutant than in either single mutant, suggesting histone H1 and Sir2 act independently. Consistently, hho1Δ cells did not accumulate extrachromosomal rDNA circles (ERCs) or the Holliday junction intermediates, which accumulate in sir2Δ cells. These data suggest that histone H1 and Sir2 regulate different recombination pathways. In summary, my research has provided insight into the mechanism of how silent chromatin at the rDNA locus is regulated, which will help us understand how fundamental components of chromosomes affect gene expression and genome stability.
6

Elementos estructurales de la cromatina en los cromosomas mitóticos

Caravaca Guasch, Juan Manuel 16 September 2004 (has links)
Nuestro grupo ha estudiado la estructura de la cromatina de núcleos de eritrocitos de pollo (Bartolomé et al., 1994; Bartolomé et al., 1995; Bermúdez et al., 1998). La consecuencia de estos estudios ha sido la elaboración de un modelo para el plegamiento de la fibra de cromatina con una elevada concentración local del DNA (Daban y Bermúdez, 1998; Daban, 2000). Sin embargo, el nivel máximo de condensación en la cromatina, se encuentra en el interior de los cromosomas metafásicos. Aunque la bibliografía ha planteado diferentes modelos para el plegamiento de la cromatina en el interior de éstos, existe un conocimiento muy escaso acerca de la estructura molecular de la cromatina en los cromosomas condensados.Se ha realizado un estudio exhaustivo de microscopía electrónica de transmisión sobre la estructura de los cromosomas metafásicos de células HeLa. Se han estudiado un total de 4410 micrografías de cromosomas metafásicos, que en su mayor parte han sido tratados con diversos medios parcialmente desnaturalizantes, para poder analizar su estructura interna.Morfológicamente, los cromosomas estudiados en este trabajo pueden agruparse en tres tipos diferentes: compactos, granulados y fibrilados. La morfología más abundante es la compacta y se observa en presencia de cationes monovalentes y divalentes a concentración similar a la presente en la cromatina metafásica (Mg2+ 1.7-40 mM). Estos cromosomas tienen las cromátidas muy densas y en sus bordes se aprecian una serie de estructuras planas superpuestas. En condiciones de menor concentración de cationes (Mg2+£ 1.7 mM), la morfología dominante es la granular. Estos cromosomas están compuestos principalmente por gran cantidad de cuerpos circulares de 30-40 nm de diámetro. Únicamente en condiciones de fuerza iónica extremadamente baja podemos encontrar la morfología fibrilar, la cual se caracteriza por la abundancia de fibras de 30-40 nm.Los resultados obtenidos con cromosomas parcialmente desnaturalizados nos permiten concluir que existen tres elementos estructurales en el interior de los cromosomas metafásicos: la fibra, el gránulo y la placa.Las fibras gruesas con diámetros que oscilan entre los 100 y los 500 nm son el resultado de la deformación plástica de las cromátidas durante los diferentes procesos de preparación de las muestras. En función de las condiciones iónicas del medio las fibras gruesas muestran gránulos o placas en su interior. Las fibras delgadas están formadas por una sucesión de cuerpos de 30-40 nm de diámetro unidos irregularmente mediante interacciones cabeza-cola. Las fibras delgadas se observan dominantemente en condiciones de concentración salina extremadamente baja.Los gránulos son unos cuerpos circulares compactos de unos 30-40 nm de diámetro. Estos cuerpos compactos descritos previamente por nuestro grupo y se interpretaron como una forma de plegamiento solenoidal de la fibra de 30 nm (Daban y Bermúdez, 1998). Se encuentran presentes en todas las condiciones estudiadas en este trabajo, siendo especialmente abundantes en presencia de iones divalentes a concentración baja y en muestras tratadas con nucleasa micrococal. La placa es un elemento estructural característico de los cromosomas cuando éstos se encuentran en su forma más compacta, en presencia de concentraciones elevadas de cationes divalentes. Esta estructura no había sido descrita previamente por otros laboratorios. Es una estructura cromatínica de gran regularidad y con una superficie muy lisa. Hemos estimado la altura de estas placas a través de muestras sombreadas unidireccionalemente con platino. El promedio de los valores obtenidos es de 6.7 ± 1.4 nm.En conjunto los resultados obtenidos en esta tesis permiten sugerir que el componente principal de la cromatina en los cromosomas metafásicos es el gránulo de 30-40 nm. Dependiendo de las condiciones iónicas, este elemento estructural fundamental se agrega a través de uniones cabeza-cola para formar fibras (fuerza iónica muy baja), o bien se agrega mediante interacciones laterales para formar placas (condiciones salinas próximas a las de la cromatina metafásica). / Our group has studied the chromatin structure in the chicken erythrocyte nuclei (Bartolome et al., 1994; Bartolomé et al., 1995; Bermúdez et al., 1998). The consequences of this studies has been the elaboration of a folding model of the chromatin fiber with a high local concentration of DNA. However, the maximum level of chromatin condensation, is found in the metaphase chromosomes. Although the bibliography has proposed different models to explain the chromatin folding inside the chromosomes, there is a low knowledge about the molecular structure of chromatin in the condensed chromosomes. In this thesis, we have carried out an exhaustive electron microscopy study about the HeLa cells metaphase chromosomes. We have studied a large number of chromosome electron micrographs (4410). Chromosomes were partially denaturated under a wide variety of conditions in order to observe some chromatin structural element inside them.Our studies indicate that chromosomes can adopt three global structural forms in function of the ionic conditions: compact, granular and fibrillar.The compact form is the most frequent and we can observe it in the presence of monovalent and divalent cations in similar concentrations than the ones found in metaphase chromatin (Mg2+ 1.7-40 mM). These chromosomes have highly condensed chromatids and we can appreciate overlapped chromatin plates around the chromosomes edges. When the chromosomes are incubated with solutions containing lower cations concentration (Mg 2+£ 1.7 mM) they become granular. The granular structures seen inside these chromosomes show a diameter of about 35 nm. Fibrillar chromosomes are observed only at very low ionic strength. The fibers seen emanating from the chromatids have a diameter of 30-40 nm.Our results obtained from partially denaturated chromosomes show that there are three structural elements inside the metaphase chromosomes: the fiber, the 30-40 nm chromatin granule and the plate.The largest fibers with a diameter of 100-400 nm, presumably are produced by mechanical deformation of chromosomes during the preparation processes. Depending of the ionic conditions these fibrillar structures are composed by plates or granules. The thinnest fibers are formed by face to face association of the 30-40 nm chromatin granules. These kind of fibers are usually found only at very low ionic strength.The chromatin granules are compact bodies with 35 nm of diameter. These compact bodies were previously described in our laboratory and were modeled as compact solenoids of nucleosomes forming (Daban and Bermúdez, 1998). They are usually seen at low divalent cation concentrations and in chromosome samples treated with micrococal nuclease.The plate is the most frequent structural element when the chromosomes are in their compact form (high ionic strength, similar to physiological conditions). This element has not been described by any group. It is a chromatin element with a regular structure and very smooth surface. We have estimated the height of the steps between layers in unidirectional shadowing experiments. The value obtained is 6.7 ± 1.4 nm.Our results suggest that the fundamental component inside the metaphase is the 30-40 nm chromatin granules. Depending of the ionic conditions, this basic structural element forms fibers through face to face interactions (very low ionic strength) or form plates through side to side interactions (high ionic strength similar to metaphase chromatin).
7

Methods for Joint Normalization and Comparison of Hi-C data

Stansfield, John C 01 January 2019 (has links)
The development of chromatin conformation capture technology has opened new avenues of study into the 3D structure and function of the genome. Chromatin structure is known to influence gene regulation, and differences in structure are now emerging as a mechanism of regulation between, e.g., cell differentiation and disease vs. normal states. Hi-C sequencing technology now provides a way to study the 3D interactions of the chromatin over the whole genome. However, like all sequencing technologies, Hi-C suffers from several forms of bias stemming from both the technology and the DNA sequence itself. Several normalization methods have been developed for normalizing individual Hi-C datasets, but little work has been done on developing joint normalization methods for comparing two or more Hi-C datasets. To make full use of Hi-C data, joint normalization and statistical comparison techniques are needed to carry out experiments to identify regions where chromatin structure differs between conditions. We develop methods for the joint normalization and comparison of two Hi-C datasets, which we then extended to more complex experimental designs. Our normalization method is novel in that it makes use of the distance-dependent nature of chromatin interactions. Our modification of the Minus vs. Average (MA) plot to the Minus vs. Distance (MD) plot allows for a nonparametric data-driven normalization technique using loess smoothing. Additionally, we present a simple statistical method using Z-scores for detecting differentially interacting regions between two datasets. Our initial method was published as the Bioconductor R package HiCcompare [http://bioconductor.org/packages/HiCcompare/](http://bioconductor.org/packages/HiCcompare/). We then further extended our normalization and comparison method for use in complex Hi-C experiments with more than two datasets and optional covariates. We extended the normalization method to jointly normalize any number of Hi-C datasets by using a cyclic loess procedure on the MD plot. The cyclic loess normalization technique can remove between dataset biases efficiently and effectively even when several datasets are analyzed at one time. Our comparison method implements a generalized linear model-based approach for comparing complex Hi-C experiments, which may have more than two groups and additional covariates. The extended methods are also available as a Bioconductor R package [http://bioconductor.org/packages/multiHiCcompare/](http://bioconductor.org/packages/multiHiCcompare/). Finally, we demonstrate the use of HiCcompare and multiHiCcompare in several test cases on real data in addition to comparing them to other similar methods (https://doi.org/10.1002/cpbi.76).
8

Biophysical Characterization of the Dynamic Regulation of Chromatin Structure and Rheology in Human Cell Nuclei

Spagnol, Stephen 01 May 2015 (has links)
Out of the growing body of evidence demonstrating the role of higher-order chromatin organization within the nucleus in regulating the functions of the linear sequence of DNA emerges the genome as a physical entity. DNA packs into hierarchical levels of chromatin condensation, which then tailor accessibility to the linear sequence for nuclear processes while also serving as a central feature of nuclear organization. Further, varying condensation state alters the physical properties of the chromatin fiber. These may then exert or facilitate forces aiding in the spatial organization within the nucleus. Yet, this complex concept of nuclear structure even neglects the dynamic aspects of the genome continuously fluctuating and undergoing structural remodeling within the nucleus. Thus, while chromatin position within the nucleus is critical for biological functions including transcription, we must reconcile a particular position of a gene locus with the dynamic and physical nature of chromatin. Here we characterize the physical aspects of the genome associated with its dynamic properties that aid in regulation. We focus on developing techniques that measure the evolution of physical properties associated with nuclear processes. We leverage these techniques, capable of quantifying and spatially resolving its structural state within the nucleus and elucidating the underlying physics of its dynamics, to illuminate physical features associated with cellular processes. Specifically, we investigate the nuclear structural changes associated with growth factor stimulation on primary human cells known to impact large scale gene expression pathways. We also demonstrate dysfunction associated with these physical mechanisms accompany disease pathologies. Thus, we unify the biological understanding of cellular processes within the context of physical features of genome structure, organization and dynamics that are critical to human health and disease.
9

HBx-MEDIATED DISRUPTION OF p53 TUMOR SUPPRESSOR PROTEIN FUNCTION LEADING TO RE-ACTIVATION OF A SILENCED TUMOR MARKER GENE

OGDEN, STACEY KATHRYN 14 March 2002 (has links)
No description available.
10

From enhancer transcription to initiation and elongation : a study of eukaryotic transcriptional regulation during lymphocyte development / De la transcription des enhancers à l'initiation et l'élongation : une étude de la régulation transcriptionnelle eucaryote au cours du développement lymphocytaire

Koch, Frédéric 09 November 2011 (has links)
La régulation transcriptionnelle des eucaryotes supérieurs est un processus hautement contrôlé du point de vue spatial et temporel lors du développement, ou en réaction à l’environnement. La transcription ciblée des gènes codant requiert l’assemblage d’un complexe de pré-initiation (PIC) aux promoteurs comprenant l’ARN Polymérase (Pol) II et les facteurs généraux de transcription (GTFs) et dépend de la médiation d’un signal par les facteurs activateurs de transcription (TFs). Les années récentes ont montré que la transition de l’initiation vers l’élongation productive de la transcription représente une étape clé de la régulation de l’expression des gènes. Ce processus est également contrôlé par la structure de la chromatine, les modifications d’histones et par la présence d’éléments cis-régulateurs tels que les ‘enhancers’ ou les ‘silencers’. Au cours de ma thèse, nous avons entrepris de décrypter les mécanismes de régulation transcriptionnelle impliqués dans les étapes du développement lymphocytaire. Nous avons essentiellement travaillé sur des thymocytes primaires murins isolés au stade de différenciation double positif (DP, CD4+/CD8+) pour lequel de nombreuses séquences de type ‘enhancers’ ont été caractérisées dans la littérature scientifique. Nous avons également utilisé des lymphocytes B humains (Raji) immortalisés pour certaines des expériences impliquant des manipulation génétiques complexes permettant l’étude de mutants du domaine carboxy-terminal (CTD) de Pol II. En couplant des approches d’analyse à l’échelle du génome au séquençage à haut-débit, nous avons établi des cartographies fines de la localisation de Pol II, des GTFs, des TFs,de modifications d’histones (ChIP-Seq) et de nucléosomes (MNase-seq) ainsi que la caractérisation de populations variées d’ARN par RNA-seq. Nos principaux résultats ont révélé (i) l’assemblage du PIC et la transcription des enhancers tissus-spécifiques, (ii) l’existence de plateforme d’initiation de la transcription (TIPs) aux enhancers et aux promoteurs tissus-spécifique, (ii) que le contenu en GC représente l’un des principaux éléments promoteurs mammifères en permettant une ouverture transcription-indépendante de la chromatine, (iv) l’importance d’une nouvelle modification post-traductionnelle du domaine CTD de Pol II pour la progression de l’enzyme en élongation et finalement (v) que la modification de l’histone H3 sur le résidu K36 methylé corrèle avec l’épissage des transcrits Pol II. Globalement, les résultats les plus important de ce manuscrit consistent dans la mise en évidence de la transcription des enhancers comme caractérisant l’expression des gènes tissus-spécifiques et dans l’importance des ilots CpG comme éléments promoteurs mammifères permettant la formation d’une structure ouverte de la chromatine. / Transcriptional regulation in higher eukaryotes resembles a tightly controlled temporal and spatial process, as exemplified during development or an organism’s response to environmental stimuli. Directed transcription requires the assembly of the preinitiation complex (PIC) at the promoter of protein-coding genes, including RNA Polymerase (Pol) II and the general transcription factors (GTFs), mediated by activating transcription factors (TFs). Several rate-limiting steps further control the progression of Pol II initiation to productive elongation of the gene. This process is further controlled by chromatin structure, histone modifications as well as cis-regulatory elements, such as enhancers or silencers. We set out to decipher some of these regulatory mechanisms during the tightly controlled process of lymphocyte development. Our work primarily made use of primary mouse thymocytes in CD4+/CD8+ double positive (DP, CD4+/CD8+) stage during T-cell development. To our advantage, many developmentally important cis-regulatory regions are well characterized in this cell population. For genetic manipulations, we made use of the Raji B-cell lymphoma cell-line. Using high throughput genome-wide approaches based on next generation sequencing (NGS), we performed both localization studies of Pol II, GTFs, TFs, histone modifying enzymes, histone modifications and nucleosomes as well as deep-sequencing of different RNA transcript populations. In summary, we find that (i) PICs assemble at tissue-specific enhancers leading to local transcription, (ii) large transcription initiation platforms (TIPs) at tissue-specific promoters and enhancers exist, which correlate with high CG-content of the DNA and transcription factor binding sites (TFBS), (iii) GC-content regulates the nucleosomal structure and initiation, including directionality, at promoters, (iv) Pol II is phosphorylated at a new residue of it C-terminal domain (CTD) in the 3’ regions of genes and (v) splicing events can influence the chromatin structure. Altogether, these results show that PIC formation at and transcription of enhancers are important for the regulation of T-cell target genes, that CpG islands represent important if not the major regulatory promoter element in mammals guiding tissue-specific gene expression and nucleosome structure, as well as novel mechanisms of Pol II elongation and the effect on chromatin structure.

Page generated in 0.0917 seconds