Return to search

Pollution-induced community tolerance in freshwater biofilms – from molecular mechanisms to loss of community functions

Exposure to herbicides poses a threat to aquatic biofilms by affecting their community structure, physiology and function. These changes render biofilms to become more tolerant, but on the downside community tolerance has ecologic costs. A concept that addresses induced community tolerance to a pollutant (PICT) was introduced by Blanck and Wängberg (1988). The basic principle of the concept is that microbial communities undergo pollution-induced succession when exposed to a pollutant over a long period of time, which changes communities structurally and functionally and enhancing tolerance to the pollutant exposure. However, the mechanisms of tolerance and the ecologic consequences were hardly studied up to date. This thesis addresses the structural and functional changes in biofilm communities and applies modern molecular methods to unravel molecular tolerance mechanisms.
Two different freshwater biofilm communities were cultivated for a period of five weeks, with one of the communities being contaminated with 4 μg L-1 diuron. Subsequently, the communities were characterized for structural and functional differences, especially focusing on their crucial role of photosynthesis. The community structure of the autotrophs was assessed using HPLC-based pigment analysis and their functional alterations were investigated using Imaging-PAM fluorometry to study photosynthesis and community oxygen profiling to determine net primary production. Then, the molecular fingerprints of the communities were measured with meta-transcriptomics (RNA-Seq) and GC-based community metabolomics approaches and analyzed with respect to changes in their molecular functions. The communities were acute exposed to diuron for one hour in a dose-response design, to reveal a potential PICT and uncover related adaptation to diuron exposure. The combination of apical and molecular methods in a dose-response design enabled the linkage of functional effects of diuron exposure and underlying molecular mechanisms based on a sensitivity analysis.
Chronic exposure to diuron impaired freshwater biofilms in their biomass accrual. The contaminated communities particularly lost autotrophic biomass, reflected by the decrease in specific chlorophyll a content. This loss was associated with a change in the molecular fingerprint of the communities, which substantiates structural and physiological changes. The decline in autotrophic biomass could be due to a primary loss of sensitive autotrophic organisms caused by the selection of better adapted species in the course of chronic exposure. Related to this hypothesis, an increase in diuron tolerance has been detected in the contaminated communities and molecular mechanisms facilitating tolerance have been found. It was shown that genes of the photosystem, reductive-pentose phosphate cycle and arginine metabolism were differentially expressed among the communities and that an increased amount of potential antioxidant degradation products was found in the contaminated communities. This led to the hypothesis that contaminated communities may have adapted to oxidative stress, making them less sensitive to diuron exposure. Moreover, the photosynthetic light harvesting complex was altered and the photoprotective xanthophyll cycle was increased in the contaminated communities. Despite these adaptation strategies, the loss of autotrophic biomass has been shown to impair primary production. This impairment persisted even under repeated short-term exposure, so that the tolerance mechanisms cannot safeguard primary production as a key function in aquatic systems.:1. The effect of chemicals on organisms and their functions .............................. 1
1.1 Welcome to the anthropocene .......................................................................... 1
1.2 From cellular stress responses to ecosystem resilience ................................... 3
1.2.1 The individual pursuit for homeostasis ....................................................... 3
1.2.2 Stability from diversity ................................................................................. 5
1.3 Community ecotoxicology - a step forward in monitoring the effects of chemical
pollution? ................................................................................................................. 6
1.4 Functional ecotoxicological assessment of microbial communities ................... 9
1.5 Molecular tools – the key to a mechanistic understanding of stressor effects
from a functional perspective in microbial communities? ...................................... 12

2. Aims and Hypothesis ......................................................................................... 14
2.1 Research question .......................................................................................... 14
2.2 Hypothesis and outline .................................................................................... 15
2.3 Experimental approach & concept .................................................................. 16
2.3.1 Aquatic freshwater biofilms as model community ..................................... 16
2.3.2 Diuron as model herbicide ........................................................................ 17
2.3.3 Experimental design ................................................................................. 18

3. Structural and physiological changes in microbial communities after chronic
exposure - PICT and altered functional capacity ................................................. 21
3.1 Introduction ..................................................................................................... 21
3.2 Methods .......................................................................................................... 23
3.2.1 Biofilm cultivation ...................................................................................... 23
3.2.2 Dry weight and autotrophic index ............................................................. 23
3.2.4 Pigment analysis of periphyton ................................................................. 23
3.2.4.1 In-vivo pigment analysis for community characterization ....................... 24
3.2.4.2 In-vivo pigment analysis based on Imaging-PAM fluorometry ............... 24
3.2.4.3 In-vivo pigment fluorescence for tolerance detection ............................. 26
3.2.4.4 Ex-vivo pigment analysis by high-pressure liquid-chromatography ....... 27
3.2.5 Community oxygen metabolism measurements ....................................... 28
3.3 Results and discussion ................................................................................... 29
3.3.1 Comparison of the structural community parameters ............................... 29
3.3.2 Photosynthetic activity and primary production of the communities after
selection phase ................................................................................................. 33
3.3.3 Acquisition of photosynthetic tolerance .................................................... 34
3.3.4 Primary production at exposure conditions ............................................... 36
3.3.5 Tolerance detection in primary production ................................................ 37
3.4 Summary and Conclusion ........................................................................... 40

4. Community gene expression analysis by meta-transcriptomics ................... 41
4.1 Introduction to meta-transcriptomics ............................................................... 41
4.2. Methods ......................................................................................................... 43
4.2.1 Sampling and RNA extraction................................................................... 43
4.2.2 RNA sequencing analysis ......................................................................... 44
4.2.3 Data assembly and processing................................................................. 45
4.2.4 Prioritization of contigs and annotation ..................................................... 47
4.2.5 Sensitivity analysis of biological processes .............................................. 48
4.3 Results and discussion ................................................................................... 48
4.3.1 Characterization of the meta-transcriptomic fingerprints .......................... 49
4.3.2 Insights into community stress response mechanisms using trend analysis
(DRomic’s) ......................................................................................................... 51
4.3.3 Response pattern in the isoform PS genes .............................................. 63
4.5 Summary and conclusion ................................................................................ 65

5. Community metabolome analysis ..................................................................... 66
5.1 Introduction to community metabolomics ........................................................ 66
5.2 Methods .......................................................................................................... 68
5.2.1 Sampling, metabolite extraction and derivatisation................................... 68
5.2.2 GC-TOF-MS analysis ............................................................................... 69
5.2.3 Data processing and statistical analysis ................................................... 69
5.3 Results and discussion ................................................................................... 70
5.3.1 Characterization of the metabolic fingerprints .......................................... 70
5.3.2 Difference in the metabolic fingerprints .................................................... 71
5.3.3 Differential metabolic responses of the communities to short-term exposure
of diuron ............................................................................................................ 73
5.4 Summary and conclusion ................................................................................ 78

6. Synthesis ............................................................................................................. 79
6.1 Approaches and challenges for linking molecular data to functional
measurements ...................................................................................................... 79
6.2 Methods .......................................................................................................... 83
6.2.1 Summary on the data ............................................................................... 83
6.2.2 Aggregation of molecular data to index values (TELI and MELI) .............. 83
6.2.3 Functional annotation of contigs and metabolites using KEGG ................ 83
6.3 Results and discussion ................................................................................... 85
6.3.1 Results of aggregation techniques ........................................................... 85
6.3.2 Sensitivity analysis of the different molecular approaches and endpoints 86
6.3.3 Mechanistic view of the molecular stress responses based on KEGG
functions ............................................................................................................ 89
6.4 Consolidation of the results – holistic interpretation and discussion ............... 93
6.4.1 Adaptation to chronic diuron exposure - from molecular changes to
community effects.............................................................................................. 93
6.4.2 Assessment of the ecological costs of Pollution-induced community
tolerance based on primary production ............................................................. 94
6.5 Outlook ............................................................................................................ 97

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:83328
Date06 February 2023
CreatorsLips, Stefan
ContributorsWeitere, Markus, Cortes Sabater, Sergi, Tlili, Ahmed, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relationhttps://doi.org/10.1016/j.scitotenv.2022.153777

Page generated in 0.0033 seconds