Return to search

Synthèse de nanocapsules polymères pour la détection de tumeurs solides par échographie et IRM du Fluor : vers un outil théranostique

Le cancer est un problème de santé publique dans le monde entier et d'importantes ressources en soins de santé sont dépensées pour le diagnostic. Plus précoce sera le dépistage des tumeurs, meilleures sont les chances de rémission sans rechute. Les techniques d'imagerie permettent de suivre l'évolution du traitement et de réorienter la stratégie en cas d'échec. En combinaison avec des agents de contraste ciblés, les modalités d'imagerie permettent même de sonder les structures à l'échelle moléculaires ce qui pourrait laisser envisager un traitement personnalisé du cancer [1, 2]. L'imagerie par résonance magnétique (IRM) et l'échographie sont deux techniques complémentaires et non invasives qui permettent la détection de plusieurs cancers (sein, colon, cerveau ...). L'échographie est rentable, portable et fournit, en temps reel, des informations anatomiques. L'IRM profite d'une pénétration profonde dans les tissus mous, d'un contraste élevé et d'une meilleure sensibilité que l'échographie [3]. Néanmoins, l'utilisation de ces techniques en combinaison avec des agents de contraste est difficile, surtout parce que la concentration locale atteint dans la tumeur est souvent inférieure à la plage de sensibilité de détection [4]. Au cours des 20 dernières années, les agents de contraste multifonctionnels ont été construits sur mesure pour atteindre une accumulation préférentielle dans les tissus malades [5]. Dans cette étude, des stratégies de ciblage passif et actif de la tumeur ont été envisagées pour renforcer la concentration locale de nanocapsules polymère, contenant un noyau liquide de bromure de perfluorooctyle (PFOB). L'approche de ciblage passif est basée sur l'effet de pénétration et la rétention accrue (EPR). Les nanocapsules doivent avoir un diamètre inférieur à 400nm une demi-vie plasmatique prolongée. L'approche de ciblage actif est basée sur la reconnaissance spécifique d'un ligand pour une cible biologique surexprimée par la tumeur ou la néovascularisation. Pour le ciblage passif, les nanocapsules ont été préparées avec PLGA-b-PEG par un procédé d'émulsion-évaporation. La morphologie cœur-couronne a été confirmée par RMN du Fluor et cryo microscopie électronique. La surface des nanocapsules est densément couverte par des chaînes de PEG qui adoptent une conformation en brosse, telle qu'évaluée par XPS et diffusion des neutrons aux petits angles. La furtivité des nanocapsules a été démontrée in vitro par des mesures d'activation du complément et in vivo par une étude cinétique de la capture hépatique, réalisée après l'administration intraveineuse de nanocapsules chez la souris nude. L'imagerie des tumeurs, par IRM du Fluor, a révélé que seulement 1% de la dose injectée a été accumulée dans le tissu malade. Par échographie aucun réhaussement du contraste n'a été observé. Ainsi, une autre approche de ciblage a été nécessaire afin d'augmenter l'accumulation des nanocapsules au sein de la tumeur. Les nanocapsules ont été fonctionnalisées avec un peptide RGD (Arginine-Glycine-Acide aspartique afin de cibler les intégrines avß3, qui sont des protéines transmembranaires surexprimées par les néovaisseaux. Deux stratégies, appelées bottom-up et top-down, ont été élaborées pour mener à une décoration satisfaisante du peptide à la surface des nanocapsules. L'efficacité du couplage a été mesurée par RMN du proton. La morphologie des nanocapsules a été étudiée par CryoTEM.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00907145
Date20 November 2012
CreatorsDiou, Odile
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds