Spelling suggestions: "subject:"ciblage passif"" "subject:"criblage passif""
1 |
Optimisation de la dosimétrie appliquée en thérapie photodynamique pour l'évaluation et la prédiction de l'efficacité du traitement de tumeursGarrier, Julie 28 October 2011 (has links) (PDF)
La thérapie photodynamique (PDT) est une modalité de traitement des petites tumeurs accessibles à la lumière. Elle repose sur l'action combinée d'un photosensibilisateur qui, en présence d'oxygène et sous l'effet d'une irradiation lumineuse, induit la synthèse d'espèces réactives de l'oxygène cytotoxiques. L'effet tumoricide de la PDT se traduit par des dommages directs sur les cellules ainsi que des dommages indirects de la néovascularisation tumorale et une activation du système immunitaire. Dans cette étude, nous avons démontré dans une première partie l'intérêt de se baser sur la distribution intratumorale de la mTHPC et non pas sur les études de biodistribution pour l'optimisation des conditions de traitement par PDT et en particulier de l'intervalle drogue-lumière (IDL). Un co-ciblage des vaisseaux et du parenchyme tumoral via un fractionnement de l'administration de la mTHPC a permis d'obtenir un taux de guérisons de 100%. Cette efficacité a été corrélée à la potentialisation de la mort des cellules par apoptose et valorisée par son association à des dommages secondaires cutanés restreints. La stratégie de fractionnement de l'administration s'avère donc être très prometteuse dans un contexte clinique. Dans la seconde partie de cette étude, nous avons établi la redistribution de la mTHPC in vivo dans le modèle de la membrane chorioallantoïdienne de poulet (CAM) à partir de formulations liposomales (Foslip®, Fospeg®) et son impact sur les dommages vasculaires photoinduits par la PDT.
|
2 |
Synthèse de nanocapsules polymères pour la détection de tumeurs solides par échographie et IRM du Fluor : vers un outil théranostique / SYNTHESIS OF POLYMERIC NANOCAPSULES FOR TUMOR DETECTION BY ULTRASONOGRAPHY AND 19F MRI : TOWARDS A THERANOSTIC PLATFORMDiou, Odile 20 November 2012 (has links)
Le cancer est un problème de santé publique dans le monde entier et d'importantes ressources en soins de santé sont dépensées pour le diagnostic. Plus précoce sera le dépistage des tumeurs, meilleures sont les chances de rémission sans rechute. Les techniques d'imagerie permettent de suivre l’évolution du traitement et de réorienter la stratégie en cas d’échec. En combinaison avec des agents de contraste ciblés, les modalités d'imagerie permettent même de sonder les structures à l’échelle moléculaires ce qui pourrait laisser envisager un traitement personnalisé du cancer [1, 2]. L’imagerie par résonance magnétique (IRM) et l’échographie sont deux techniques complémentaires et non invasives qui permettent la détection de plusieurs cancers (sein, colon, cerveau ...). L'échographie est rentable, portable et fournit, en temps reel, des informations anatomiques. L'IRM profite d’une pénétration profonde dans les tissus mous, d’un contraste élevé et d’une meilleure sensibilité que l’échographie [3]. Néanmoins, l'utilisation de ces techniques en combinaison avec des agents de contraste est difficile, surtout parce que la concentration locale atteint dans la tumeur est souvent inférieure à la plage de sensibilité de détection [4]. Au cours des 20 dernières années, les agents de contraste multifonctionnels ont été construits sur mesure pour atteindre une accumulation préférentielle dans les tissus malades [5]. Dans cette étude, des stratégies de ciblage passif et actif de la tumeur ont été envisagées pour renforcer la concentration locale de nanocapsules polymère, contenant un noyau liquide de bromure de perfluorooctyle (PFOB). L’approche de ciblage passif est basée sur l’effet de pénétration et la rétention accrue (EPR). Les nanocapsules doivent avoir un diamètre inférieur à 400nm une demi-vie plasmatique prolongée. L’approche de ciblage actif est basée sur la reconnaissance spécifique d’un ligand pour une cible biologique surexprimée par la tumeur ou la néovascularisation. Pour le ciblage passif, les nanocapsules ont été préparées avec PLGA-b-PEG par un procédé d'émulsion-évaporation. La morphologie cœur-couronne a été confirmée par RMN du Fluor et cryo microscopie électronique. La surface des nanocapsules est densément couverte par des chaînes de PEG qui adoptent une conformation en brosse, telle qu'évaluée par XPS et diffusion des neutrons aux petits angles. La furtivité des nanocapsules a été démontrée in vitro par des mesures d'activation du complément et in vivo par une étude cinétique de la capture hépatique, réalisée après l'administration intraveineuse de nanocapsules chez la souris nude. L'imagerie des tumeurs, par IRM du Fluor, a révélé que seulement 1% de la dose injectée a été accumulée dans le tissu malade. Par échographie aucun réhaussement du contraste n’a été observé. Ainsi, une autre approche de ciblage a été nécessaire afin d’augmenter l’accumulation des nanocapsules au sein de la tumeur. Les nanocapsules ont été fonctionnalisées avec un peptide RGD (Arginine-Glycine-Acide aspartique afin de cibler les intégrines avß3, qui sont des protéines transmembranaires surexprimées par les néovaisseaux. Deux stratégies, appelées bottom-up et top-down, ont été élaborées pour mener à une décoration satisfaisante du peptide à la surface des nanocapsules. L'efficacité du couplage a été mesurée par RMN du proton. La morphologie des nanocapsules a été étudiée par CryoTEM. / Cancer is a worldwide public health concern and significant health care resources are spent on diagnosis. The sooner the tumor detection, the better the chance of remission without relapse. Furthermore, imaging modalities facilitate the treatment monitoring and feedback, and support decision making to change the strategy when the treatment fails. When used in combination with targeted contrast agents, imaging modalities even enable to probe molecular structures on specific cells opening the doors to personalized cancer therapy [1, 2]. Ultrasonography and Magnetic Resonance Imaging (MRI) are two complementary and non invasive imaging modalities, which allow the detection of a broad range of cancers (breast, colon, brain…). Ultrasonography is cost-effective, portable and provides real-time anatomical information. MRI imparts deep penetration into soft tissues with high contrast and better sensitivity [3]. Nevertheless the use of these techniques in combination with contrast agents is challenging, mostly because the local concentration reached in the tumor is often below the sensitivity detection range [4]. In the last 20 years, multifunctional contrast agents were custom-built to achieve preferential accumulation in the diseased tissue [5]. In this study, passive and active tumor targeting strategies were considered to enhance the local concentration of polymeric nanocapsules, containing a liquid core of perfluorooctyl bromide (PFOB). The passive tumor targeting approach is based on the enhanced permeation and retention (EPR) effect. The related nanocapsules require to be small enough (< 400nm) and have extended plasmatic half life. The active tumor targeting approach is based on the specific receptor-ligand recognition.For passive tumor targeting, the nanocapsules were prepared with PLGA-b-PEG by an emulsion-evaporation process. The core shell morphology was confirmed by cryoTEM and 19F NMR. The surface of nanocapsules was densely covered by PEG chains with brush conformation, as assessed by XPS and Small Angle Neutrons Scattering. The related stealthiness of nanocapsules was evidenced in vitro by complement activation measurements and in vivo by a kinetic study of the mice liver uptake, performed after intravenous administration of nanocapsules. The tumor imaging, by 19F MRI, revealed that only 1% of the injected dose was accumulated in the diseased tissue whereas, by ultrasonography no contrast enhancement was observed. Thus, another targeting approach was required to increase nanocapsule distribution within the tumor. Nanocapsules were functionalized with an Arginine-Glycine-Aspartic acid (RGD) peptide to target the αvβ3 integrins, which are overexpressed proteins on neovessels. Two strategies, called bottom-up and top-down, were designed to achieve satisfying peptide decoration on nanocapsule surface. The coupling efficiency was measured by 1H NMR. The nanocapsule morphology was studied by CryoTEM.
|
3 |
Conception et optimisation de nanoparticules dendrimériques photoactivables dans le cadre d’un traitement photodynamique / Conception and optimization of photoactivable dendrimer-based nanoparticles for photodynamic treatmentBastien, Estelle 07 December 2015 (has links)
La thérapie photodynamique (PDT) est une modalité de traitement des cancers prometteuse, mettant en jeu une action combinée de l’oxygène moléculaire, de la lumière et d’un photosensibilisateur (PS). Néanmoins, les PSs utilisés souffrent d’une faible solubilité dans les milieux aqueux ainsi que d’un tumorotropisme limité qui sont des barrières à la réussite du traitement. Ainsi, actuellement, une attention particulière est portée au développement de nanoparticules (NPs) capables de pallier les défauts des PSs. Notre travail a consisté à étudier des dendrimères poly(amidoamine) (PAMAM), macromolécules polymériques tridimensionnelles, conjugués via une liaison covalente au PS, la Chlorine e6 (Ce6). Cette construction nous a permis de vectoriser 32 molécules de Ce6 par dendrimère. La production d’oxygène singulet et l’émission de fluorescence ont été modérément affectées par le greffage covalent de la Ce6 aux NPs. In vitro, les dendrimères PAMAM ont permis d’accroitre l’efficacité PDT de la Ce6 en potentialisant son internalisation cellulaire via un mécanisme actif d’endocytose. Néanmoins, l’efficacité PDT des NPs est limitée par la concentration locale élevée en Ce6 en périphérie des dendrimères qui réduit son rendement quantique en oxygène singulet moléculaire, espèce cytotoxique. Une libération de la Ce6 permettrait ainsi de potentialiser l’efficacité PDT des NPs en restaurant notamment les propriétés photophysiques de la Ce6. La suite de ce travail a été de concevoir une NP capable de libérer la Ce6 sous l’action d’estérases retrouvées dans les cellules. Leur caractérisation a permis de démontrer en solution que les propriétés photophysiques de la Ce6 étaient rétablies à la suite de son relargage des NPs. Cette dernière construction clivable est prometteuse pour de futures applications en PDT / Photodynamic therapy (PDT) is a modality of cancer treatment, involving a combined action of molecular oxygen, light and photosensitizers (PS). However, the PSs suffer from a low solubility in aqueous media and limited tumor accumulation, diminishing the treatment success. Presently, particular attention is paied to the development of dendrimer-based nanoparticles (NP) that are able to overcome the shortcomings of the PSs. The present study investigates the poly(amidoamine) dendrimer (PAMAM), a tridimensional polymeric macromolecule, covalently functionalized with the PS Chlorin e6 (Ce6). The singlet oxygen generation efficiency and fluorescence emission were moderately affected by the covalent binding of the Ce6 to the dendrimer. This construction allows the vectorization of 32 Ce6 molecules per dendrimer. In vitro, PAMAM dendrimers improve the PDT efficiency of Ce6 by promoting their cellular internalization via an active endocytosis mechanism. However, the PDT efficiency of NPs is limited by the high local concentration of Ce6 at the periphery of dendrimers decreasing production of singlet oxygen. Ce6 release could restore Ce6 photophysical properties and as such improve the PDT efficiency of NP. Thus, the next step of this work was to design a cleavable NP able to release the Ce6 under esterase activity. In solution the NP characterization demonstrated that the photophysical properties of Ce6 were recovered after their release from the NP. This cleavable construction displays promising perspectives for future PDT applications
|
4 |
APPLICATION DES NANOCAPSULES LIPIDIQUES CHARGEES EN FERROCIPHENOL DANS LE TRAITEMENT DU GLIOBLASTOMEHuynh, Ngoc Trinh 27 May 2011 (has links) (PDF)
Ce travail a pour but d'optimiser la chimiothérapie du glioblastome à l'aide de nanocapsules lipidiques (LNC) chargées en ferrociphénol (FcdiOH), un composé organo-métallique anticancéreux innovant. Différentes voies d'administration ont été envisagées : la voie locale par stéréotaxie (convection-enhanced delivery ou CED) (60 μL de LNC, 0.36 mg de FcdiOH/rat), l'injection intra-carotidienne et l'injection intraveineuse (400 μL de LNC, 2.4 mg de FcdiOH/rat). Sur le modèle 9L orthotopique, l'efficacité antitumorale du principe actif s'est avérée être proportionnelle à la dose injectée. Le traitement local par CED d'une suspension iso-osmolaire de LNC-FcdiOH a augmenté significativement la survie des rats traités par rapport à celle du groupe témoin (médiane de 28.5 jours au lieu de 25 jours). Le recouvrement par de longues chaines de poly(éthylène glycol) (DSPE-mPEG2000) a permis aux LNC ainsi pégylées d'améliorer leur temps de circulation sanguine avec l'obtention d'une demi-vie 4 fois plus longue et d'une aire sous la courbe 1.65 fois plus étendue que celles des LNC classiques. Cela a entraîné l'éradication de la tumeur 9L sous-cutanée après une seule injection intraveineuse de DSPE-mPEG2000-LNC-FcdiOH, montrant l'efficacité du ciblage passif obtenu avec ces nanovecteurs. En parallèle, l'injection intra-carotidienne représente une voie d'administration prometteuse pour la délivrance de principes actifs dans le cerveau. En effet, le traitement intra-carotidien à l'aide des LNC pégylées a permis d'augmenter de 20% la survie des rats porteurs d'un gliosarcome 9L intracérébral (médiane de 30 jours). Enfin, l'incorporation de peptides NFL-TBS à la surface des LNC semble être une approche intéressante dans le cadre d'un ciblage actif, des études préliminaires ayant mis en évidence un rat survivant jusqu'à 44 jours.
|
5 |
Synthèse de nanocapsules polymères pour la détection de tumeurs solides par échographie et IRM du Fluor : vers un outil théranostiqueDiou, Odile 20 November 2012 (has links) (PDF)
Le cancer est un problème de santé publique dans le monde entier et d'importantes ressources en soins de santé sont dépensées pour le diagnostic. Plus précoce sera le dépistage des tumeurs, meilleures sont les chances de rémission sans rechute. Les techniques d'imagerie permettent de suivre l'évolution du traitement et de réorienter la stratégie en cas d'échec. En combinaison avec des agents de contraste ciblés, les modalités d'imagerie permettent même de sonder les structures à l'échelle moléculaires ce qui pourrait laisser envisager un traitement personnalisé du cancer [1, 2]. L'imagerie par résonance magnétique (IRM) et l'échographie sont deux techniques complémentaires et non invasives qui permettent la détection de plusieurs cancers (sein, colon, cerveau ...). L'échographie est rentable, portable et fournit, en temps reel, des informations anatomiques. L'IRM profite d'une pénétration profonde dans les tissus mous, d'un contraste élevé et d'une meilleure sensibilité que l'échographie [3]. Néanmoins, l'utilisation de ces techniques en combinaison avec des agents de contraste est difficile, surtout parce que la concentration locale atteint dans la tumeur est souvent inférieure à la plage de sensibilité de détection [4]. Au cours des 20 dernières années, les agents de contraste multifonctionnels ont été construits sur mesure pour atteindre une accumulation préférentielle dans les tissus malades [5]. Dans cette étude, des stratégies de ciblage passif et actif de la tumeur ont été envisagées pour renforcer la concentration locale de nanocapsules polymère, contenant un noyau liquide de bromure de perfluorooctyle (PFOB). L'approche de ciblage passif est basée sur l'effet de pénétration et la rétention accrue (EPR). Les nanocapsules doivent avoir un diamètre inférieur à 400nm une demi-vie plasmatique prolongée. L'approche de ciblage actif est basée sur la reconnaissance spécifique d'un ligand pour une cible biologique surexprimée par la tumeur ou la néovascularisation. Pour le ciblage passif, les nanocapsules ont été préparées avec PLGA-b-PEG par un procédé d'émulsion-évaporation. La morphologie cœur-couronne a été confirmée par RMN du Fluor et cryo microscopie électronique. La surface des nanocapsules est densément couverte par des chaînes de PEG qui adoptent une conformation en brosse, telle qu'évaluée par XPS et diffusion des neutrons aux petits angles. La furtivité des nanocapsules a été démontrée in vitro par des mesures d'activation du complément et in vivo par une étude cinétique de la capture hépatique, réalisée après l'administration intraveineuse de nanocapsules chez la souris nude. L'imagerie des tumeurs, par IRM du Fluor, a révélé que seulement 1% de la dose injectée a été accumulée dans le tissu malade. Par échographie aucun réhaussement du contraste n'a été observé. Ainsi, une autre approche de ciblage a été nécessaire afin d'augmenter l'accumulation des nanocapsules au sein de la tumeur. Les nanocapsules ont été fonctionnalisées avec un peptide RGD (Arginine-Glycine-Acide aspartique afin de cibler les intégrines avß3, qui sont des protéines transmembranaires surexprimées par les néovaisseaux. Deux stratégies, appelées bottom-up et top-down, ont été élaborées pour mener à une décoration satisfaisante du peptide à la surface des nanocapsules. L'efficacité du couplage a été mesurée par RMN du proton. La morphologie des nanocapsules a été étudiée par CryoTEM.
|
6 |
Optimisation de la dosimétrie appliquée en thérapie photodynamique pour l'évaluation et la prédiction de l'efficacité du traitement de tumeurs / Optimization of the dosimetry used in photodynamic therapy for the evaluation and the prediction of the efficacy of tumor treatmentGarrier, Julie 28 October 2011 (has links)
La thérapie photodynamique (PDT) est une modalité de traitement des petites tumeurs accessibles à la lumière. Elle repose sur l'action combinée d'un photosensibilisateur qui, en présence d'oxygène et sous l'effet d'une irradiation lumineuse, induit la synthèse d'espèces réactives de l'oxygène cytotoxiques. L'effet tumoricide de la PDT se traduit par des dommages directs sur les cellules ainsi que des dommages indirects de la néovascularisation tumorale et une activation du système immunitaire. Dans cette étude, nous avons démontré dans une première partie l'intérêt de se baser sur la distribution intratumorale de la mTHPC et non pas sur les études de biodistribution pour l'optimisation des conditions de traitement par PDT et en particulier de l'intervalle drogue-lumière (IDL). Un co-ciblage des vaisseaux et du parenchyme tumoral via un fractionnement de l'administration de la mTHPC a permis d'obtenir un taux de guérisons de 100%. Cette efficacité a été corrélée à la potentialisation de la mort des cellules par apoptose et valorisée par son association à des dommages secondaires cutanés restreints. La stratégie de fractionnement de l'administration s'avère donc être très prometteuse dans un contexte clinique. Dans la seconde partie de cette étude, nous avons établi la redistribution de la mTHPC in vivo dans le modèle de la membrane chorioallantoïdienne de poulet (CAM) à partir de formulations liposomales (Foslip®, Fospeg®) et son impact sur les dommages vasculaires photoinduits par la PDT / Photodynamic therapy (PDT) is a therapeutic strategy for the treatment of small localized tumors accessible to the visible light irradiation. It is based on the combined action of photosensitizer (PS), light and molecular oxygen. Tumoricidal effect of PDT is triggered by direct damage of malignant cells and indirect vascular damage followed by an activation of the immune system. The present study investigates the relationship between photoinduced apoptosis in each compartment of interest (vascular versus neoplastic) and mTHPC-PDT treatment efficiency in function of the intratumoral distribution of mTHPC. The latter was defined by the drug-light intervals. In the first part, we demonstrated the importance of the intratumoral distribution of mTHPC to optimize photodynamic parameters. The fractionation of the PS administration permitted to obtain a tumor cure rate of 100% correlated to a massive apoptosis of pathological tissues. Moreover, this treatment strategy induced only limited skin damages and few inflammation which could be an advantage in clinical context. In the second part, we evidenced the mTHPC redistribution from liposomal formulations (Foslip®, Fospeg®) in vivo in the chick chorioallantoic membrane model (CAM) and its influence on photoinduced vascular damage
|
Page generated in 0.0621 seconds