• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification et contrôle de systèmes biologiques. Application à la thérapie photodynamique / Biological systems identification and control. Application to the photodynamic therapy

Tylcz, Jean-Baptiste 04 December 2013 (has links)
Les travaux présentés dans ce manuscrit sont divisés en deux grandes parties, et abordent des applications biologiques relatives au cancer et plus particulièrement à leur traitement. La première partie est consacrée à une recherche technologique, dont l'objectif est le développement d'un dispositif innovant permettant de contrôler plus efficacement la phase cytotoxique de la thérapie photodynamique. Cette thérapie contre le cancer met en jeu trois éléments principaux : un agent photosensibilisant, de l'oxygène et de la lumière. La solution proposée repose sur une stratégie d'asservissement d'un indicateur thérapeutique observable durant le traitement : le photoblanchiment. Le système d'asservissement développé utilise un observateur d'état qui a nécessité de résoudre en pratique des problèmes d'identifiabilité et d'identification d'un processus non-linéaire. Il est implanté dans une plateforme pilote opérationnelle validée par des tests in vitro. Une demande de brevet pour le dispositif développé est en cours. La seconde partie de cette thèse s'inscrit dans le cadre d'une recherche appliquée, sur le thème de l'identification à temps continu de systèmes biologiques, à partir de séquences d'images au travers de trois cas d'études aux échelles cellulaire, tissulaire et animale. Une première étude est dédiée à la proposition d'un modèle à compartiments de la pharmacocinétique intratumorale de nanoparticules multifonctionnelles dans des cerveaux de rats, ainsi qu'à son identification à partir de séquences d'images IRM in vivo. La seconde traite de la modélisation, à partir de données d'imagerie expérimentale de fluorescence, de la fonctionnalité des jonctions communicantes intercellulaires. L'objectif est de discriminer deux types de cellules cancéreuses, grâce à leur dynamique de recouvrement de fluorescence. Enfin, un troisième cas d'étude aborde le problème de l'identification d'une cohorte de systèmes à partir de petits échantillons de données. Le contexte applicatif est l'étude de l'angiogenèse tumoral et de l'effet des traitements anti-cancer sur le développement du réseau vasculaire / The presented works are divided into two main parts and deal with biological applications to cancer, and more specifically to their treatments. The first part is dedicated to a technological research, in which a new device is designed and built to efficiently control the cytotoxic phase of photodynamic therapy. This anti-cancer therapy involves three main compounds: a photosensitizer agent, oxygen and light. The proposed solution relies on the control of an observable therapeutic indicator during the treatment: the photobleaching phenomenon. The developed control system uses a state observer which required to solve practical identifiability issues and the identification of a non-linear process. It has been implemented in a technical platform and validated during in in vitro tests. A patent application for this device is currently under review. The second section of this thesis deals with the applicability of continuous-time identification approaches to three biological systems from image sequences recorded at cellular, tissue and animal scales. A first study examines how continuous-time system identification may be used to determine a pharmacokinetic compartmental model of multifunctional nanoparticles within rat brain from in vivo MRI images. The second study deals with the empirical modeling of the junctional intercellular communication functionalities. The purpose is to discriminate two cancer cells types from their fluorescence recovery dynamics. Finally, a third study case addresses the issue of identifying a systems cohort from small amount of data. The applied context is the study of tumoral angiogenesis and the anti-cancer treatment effects on vascular network development
2

Conception, élaboration et caractérisation photophysiques et biochimiques de molécules photoactivables pour la thérapie photodynamique / Selective antitumor effect in PhotoDynamic Therapy mediated by photo-activable molecules, activated by endopeptidases

Verhille, Marc 25 October 2012 (has links)
L'angiogenèse est une étape clef dans le processus de progression tumorale. Elle est caractérisée par une surexpresssion d'un grand nombre de métalloprotéinases matricielles (MMP). Parmis ces MMP, les gélatinases (MMP-2 et MMP-9) sont connues pour jouer un rôle important dans l'angiogenèse tumorale et la croissance de nombreux cancers. Les "Photodynamic Molecular Beacon" (PMB) sont des constructions moléculaires qui peuvent être utilisées dans le traitement de cancers en associant un photosensibilisateur (PS) de type chlorine et un inhibiteur d'états excités, aussi appelé "Quencher", liés par un peptide substrat des gélatinases afin d'inhiber la toxicité du PS dans les cellules non ciblées, et de restaurer sa toxicité uniquement à proximité des gélatinases. Nous avons donc cherché à déterminer le couple PS/quencher permettant la meilleure inhibition de la production d'oxygène singulet, principale source de la toxicité du PS, puis avons synthétisé une famille de PMB ciblant les gélatinases. Différents peptides et bras espaceurs ont été utilisés pour évaluer l'influence de la distance entre le PS et le quencher sur les propriétés photophysiques et l'activation enzymatique du PMB / Angiogenesis is a key step in the tumoral progression process. It is characterized by an over-expression of a number of matrix metalloproteinases (MMP). Among these MMPs, gelatinases (MMP-2 and MMP-9) are known to play a critical role in tumor angiogenesis and the growth of many cancers. Photodynamic Molecular Beacons (PMB) can be designed for cancer treatment by associating a chlorin-like photosensitizer and a black hole quencher linked by a gelatinase substrate peptide with the aim of silencing photosensitizer toxicity in non-targeted cells and restore its toxicity only in surrounding gelatinases. We investigated the PS/quencher pair allowing the best singlet oxygen production inhibition, and then we synthesized a novel family of PMB triggering gélatinases MMP-2 and MMP-9. Different lengths of peptide and spacers were used in order to determinate the influence of the distance between PS and quencher on the PMB photophysical properties and enzymatic activation.
3

Traitement photodynamique interstitiel vasculaire stéréotaxique des tumeurs cérébrales guidé par imagerie : intérêt des nanoparticules multifonctionnelles ciblant neuropiline-1 / Vascular interstitial stereotaxic photodynamic treatment of cerebral tumors guided by imaging : Interest of multifunctional nanoparticles targeting neuropilin-1

Bechet, Denise 26 September 2011 (has links)
La thérapie photodynamique (PDT) appliquée aux tumeurs cérébrales est évaluée comme une stratégie complémentaire par rapport aux thérapies conventionnelles. De nombreux travaux mettent en exergue le rôle prépondérant joué par l'effet vasculaire de la PDT dans l'éradication tumorale. Ainsi, une accumulation sélective du photosensibilisateur au niveau des néo-vaisseaux tumoraux favorise cet effet et donc, l'efficacité du traitement photodynamique. La stratégie vasculaire consistant à coupler un photosensibilisateur à un peptide ligand pour cibler le récepteur neuropiline-1 (NRP-1) surexprimé par les cellules endothéliales angiogéniques a été validée, démontrant également l'induction de l'expression du facteur tissulaire immédiatement après PDT. Grâce à l'utilisation de nanoparticules multifonctionnelles, des améliorations ont été apportées à la stratégie initiale pour une PDT interstitielle (iPDT) guidée par l'imagerie. Fonctionnalisées par le peptide ligand, vecteur du photosensibilisateur et d'un agent de contraste puis rendues furtives, les nanoparticules sélectionnées présentent les propriétés originales requises pour une action combinée en IRM et PDT ciblée. Les nano-objets sont affins pour NRP-1 et conservent leur caractéristique photo-activable. Les essais sur rats nude xénogreffés en orthotopique par un modèle de gliome malin humain, valident la faisabilité du concept de iPDT guidée par l'IRM en temps réel. Après injection des nanoparticules par voie intraveineuse, un rehaussement positif du signal IRM est observé au niveau de la zone tumorale pour optimiser l'implantation de la fibre optique. Les résultats obtenus par IRM de perfusion et, l'expression protéique de NRP-1 au niveau du tissu et des berges tumorales, valident la sélectivité des nanoparticules fonctionnalisées. La combinaison des techniques d'imagerie non-invasives (IRM, SRM, TEP/CT) a permis le suivi thérapeutique / Photodynamic therapy (PDT) for brain tumors appears to be complementary to conventional treatments. Number studies show the major role of the vascular effect in the tumor eradication by PDT. To promote this vascular effect, a selective targeting of neuropilin-1 (NRP-1), mainly over-expressed by tumor angiogenic vessels, was investigated using a photosensitizer coupled to a ligand peptide. We validated the interest of using this active-targeting strategy to promote this vascular effect by the induction of tissue factor expression immediately post-PDT. For interstitial PDT (iPDT) of brain tumors guided by real-time imaging, multifunctional nanoparticles consisting of a surface-localized tumor vasculature targeting NRP-1 and encapsulated PDT and imaging agents, have been developed. The selected nanoparticles are favourable to a photosensitizer targeting strategy for iPDT combined with MRI.Characterization studies of the nanoparticles reveal a photodynamic efficiency and demonstrate a molecular affinity of the functionalized nanoparticle to NRP-1 target. After intravenous injection of the multifunctional nanoparticles into rats with intracranial glioma, we demonstrate a positive contrast enhancement of the tumor tissue by MRI, allowing the optimization of the optical fiber implantation. Perfusion MRI data and NRP-1 protein expression of the tumor and brain adjacent to tumor tissues check selectivity of the functionalized nanoparticle. The combination of non-invasive techniques of imaging (MRI, MRS, PET/CT) validates this concept of iPDT guided by MRI
4

Synthèse de systèmes à base de photosensibilisateurs pour l'amélioration de la sélectivité tumorale en thérapie photodynamique / Synthesis of new systems based on photosensitizers for the improvement of the tumor selectivity in photodynamic therapy

Stallivieri, Aurélie 16 October 2015 (has links)
Une des limitations de la thérapie photodynamique est la faible sélectivité des photosensibilisateurs (PS) pour les tissus tumoraux. La recherche de nouveaux PS plus sélectifs s’est orientée vers la synthèse de PS couplés à des motifs afins pour des récepteurs membranaires surexprimés dans certains cancers. Le récepteur à l’acide folique est surexprimé dans les carcinomes ovariens et des PS ont été conjugués à de l’acide folique. Des PS ont aussi été couplés à un peptide spécifique de neuropiline 1 surexprimé au niveau des cellules tumorales de médulloblastome. Une autre stratégie pour augmenter la sélectivité du traitement vise à produire les espèces réactives de l’oxygène spécifiquement au niveau du site tumoral. L’activité de clivage enzymatique de marqueurs biologiques surexprimés dans les zones tumorales est utilisée. Les gélatinases (MMP-2 et -9) et leur activateur MMP-14 sont connues pour jouer un rôle primordial dans l'angiogenèse tumorale et la croissance du glioblastome multiforme. Différents photodynamic molecular beacons (PMB), associant un PS et un quencher lié par un peptide substrat des gélatinases et MMP-14, ont été développés / One limitation of photodynamic therapy is the low selectivity of photosensitizers (PS) to tumour tissue. The search of new PS more selective began to focus on the synthesis of PS coupled with substrate specific of the membrane receptors overexpressed in certain cancers. The acid folic receptor is overexpressed in ovarian carcinomas and PS were conjugated with folic acid. PS were also coupled with a specific peptide of neuropilin 1 overexpressed in tumoral cells of medulloblastoma. Another strategy for increasing the selectivity of the treatment is to produce reactive oxygen species specifically at the tumor site. The activity of enzymatic cleavage of biomarkers overexpressed in tumour areas is used. The gelatinases (MMP-2 and MMP-9) and their activator MMP-14 are known to play a key role in tumour angiogenesis and the growth of glioblastoma multiform. Different photodynamic molecular beacons (PMB), composed of a photosensitizer and a quencher linked together by a peptide substrate of gelatinases or MMP-14, were designed.
5

Ciblage tumoral par des nanoparticules photoactivable basée sur des complexes de cyclodextrines encapsulées dans des liposomes / Cyclodextrin-based photoactive liposomal nanoparticles for tumor targeting

Yakavets, Ilya 12 November 2019 (has links)
La thérapie photodynamique (PDT) est un traitement alternatif du cancer plus ciblé et moins invasif que les modalités traditionnelles. La Temoporfine (mTHPC, nom sous forme médicamenteuse : Foscan®), est l'un des PS les plus puissants cliniquement approuvés. Cependant, sa faible solubilité en milieu aqueux a provoqué plusieurs complications lors de son administration. La présente étude vise à mettre au point des nanoparticules constituées d’une molécule anticancéreuse couplée à la cyclodextrine intégré dans un liposome (drug-in-cyclodextrin-in-liposome, DCL) en couplant deux systèmes d'administration indépendants : les complexes d'inclusion cyclodextrine-mTHPC et les vésicules liposomales pour améliorer le transport et la pénétration de la mTHPC dans le tissu cible. La formation de complexes d'inclusion entre les cyclodextrines et la mTHPC a été étudiée en détail. Sur la base de ces données, des mTHPC-DCL à simple et double charge ont été préparées, optimisées et caractérisées. Il a été démontré que les mTHPC-DCL sont stables et que presque tous les mTHPC-DCL sont liés à β-CDs dans la lumière aqueuse interne des liposomes. L'influence des DCLs sur l'accumulation, la distribution et l'efficacité photodynamique de la mTHPC a été étudiée dans des modèles cellulaire en monocouche et sphéroïde multicellulaires 3D d’adénocarcinome de pharynx humain (HT29). En utilisant des sphéroïdes, nous avons démontré que le DCL à base de triméthyl-β-CD fournissait une accumulation homogène de la mTHPC dans tout le volume des sphéroïdes tumoraux, suggérant ainsi une distribution optimale de la mTHPC. / Photodynamic therapy (PDT) is an alternative cancer treatment which offers a more targeted and less invasive treatment regimen compared to traditional modalities. Temoporfin (mTHPC, medicinal product name: Foscan®), is one of the most potent clinically approved PS. However, its poor solubility in aqueous medium caused several complications of its administration. The present study is aimed at the development of drug-in-cyclodextrin-in-liposome (DCL) nanoparticles by coupling two independent delivery systems: cyclodextrin/mTHPC inclusion complexes and liposomal vesicles to improve the transport and penetration of mTHPC to the target tissue. The formation of inclusion complexes between cyclodextrins and mTHPC was studied in detail. Based on these data, single and double loaded mTHPC-DCLs have been prepared, optimized and characterized. It was demonstrated that mTHPC-DCLs are stable and almost all mTHPC is bound to β-CDs in the inner aqueous liposome lumen. The influence of DCLs on mTHPC accumulation, distribution and photodynamic efficiency was studied in human adenocarcinoma HT29 cellular monolayer and spheroid models. Using 3D multicellular HT29 tumor spheroids we demonstrated that trimethyl-β-CD-based DCL provides homogenous accumulation of mTHPC across tumor spheroid volume thus supposing optimal mTHPC distribution.
6

Optimisation de la dosimétrie appliquée en thérapie photodynamique pour l'évaluation et la prédiction de l'efficacité du traitement de tumeurs / Optimization of the dosimetry used in photodynamic therapy for the evaluation and the prediction of the efficacy of tumor treatment

Garrier, Julie 28 October 2011 (has links)
La thérapie photodynamique (PDT) est une modalité de traitement des petites tumeurs accessibles à la lumière. Elle repose sur l'action combinée d'un photosensibilisateur qui, en présence d'oxygène et sous l'effet d'une irradiation lumineuse, induit la synthèse d'espèces réactives de l'oxygène cytotoxiques. L'effet tumoricide de la PDT se traduit par des dommages directs sur les cellules ainsi que des dommages indirects de la néovascularisation tumorale et une activation du système immunitaire. Dans cette étude, nous avons démontré dans une première partie l'intérêt de se baser sur la distribution intratumorale de la mTHPC et non pas sur les études de biodistribution pour l'optimisation des conditions de traitement par PDT et en particulier de l'intervalle drogue-lumière (IDL). Un co-ciblage des vaisseaux et du parenchyme tumoral via un fractionnement de l'administration de la mTHPC a permis d'obtenir un taux de guérisons de 100%. Cette efficacité a été corrélée à la potentialisation de la mort des cellules par apoptose et valorisée par son association à des dommages secondaires cutanés restreints. La stratégie de fractionnement de l'administration s'avère donc être très prometteuse dans un contexte clinique. Dans la seconde partie de cette étude, nous avons établi la redistribution de la mTHPC in vivo dans le modèle de la membrane chorioallantoïdienne de poulet (CAM) à partir de formulations liposomales (Foslip®, Fospeg®) et son impact sur les dommages vasculaires photoinduits par la PDT / Photodynamic therapy (PDT) is a therapeutic strategy for the treatment of small localized tumors accessible to the visible light irradiation. It is based on the combined action of photosensitizer (PS), light and molecular oxygen. Tumoricidal effect of PDT is triggered by direct damage of malignant cells and indirect vascular damage followed by an activation of the immune system. The present study investigates the relationship between photoinduced apoptosis in each compartment of interest (vascular versus neoplastic) and mTHPC-PDT treatment efficiency in function of the intratumoral distribution of mTHPC. The latter was defined by the drug-light intervals. In the first part, we demonstrated the importance of the intratumoral distribution of mTHPC to optimize photodynamic parameters. The fractionation of the PS administration permitted to obtain a tumor cure rate of 100% correlated to a massive apoptosis of pathological tissues. Moreover, this treatment strategy induced only limited skin damages and few inflammation which could be an advantage in clinical context. In the second part, we evidenced the mTHPC redistribution from liposomal formulations (Foslip®, Fospeg®) in vivo in the chick chorioallantoic membrane model (CAM) and its influence on photoinduced vascular damage
7

Optimisation de nanoparticules multifonctionnelles pour une amélioration de l'efficacité photodynamique, de la sélectivité tumorale et de la détection par IRM / Optimization of multifunctional nanoparticles for improvements of photodynamic efficiency, tumor selectivity and MRI detection

Seve, Aymeric 03 December 2013 (has links)
La thérapie photodynamique (PDT pour Photodynamic Therapy) met en jeu des molécules nommées photosensibilisateurs (PS), de l'oxygène et de la lumière. Les PS, non cytotoxiques à l'obscurité, produisent des espèces réactives de l'oxygène (ROS) lorsqu'ils sont excités avec une longueur d'onde appropriée en présence d'oxygène. Les ROS regroupent les radicaux de l'oxygène et l'oxygène singulet (1O2), qui est la principale forme de ROS formés lors du processus de PDT. En présence de tissus vivants, l'1O2 va conduire à la mort cellulaire par apoptose ou par nécrose. Pour améliorer l'efficacité photodynamique, une des pistes étudiées par la communauté scientifique consiste à améliorer la sélectivité du traitement. Le traitement des tumeurs primaires malignes du cerveau, dont le glioblastome multiforme (GBM ou astrocytome de grade IV) est la forme la plus agressive, reste un challenge. Lorsqu'elle est possible, la chirurgie occupe une place prépondérante. L'exérèse ne concerne que la partie volumineuse centrale de la tumeur, tandis que la zone périphérique infiltrante est, quant à elle ciblée par des traitements supplémentaires. Malgré les progrès de la neurochirurgie et de la radiothérapie, l'espérance de vie à 5 ans ne dépasse pas 10%. La thérapie photodynamique se présente comme une alternative thérapeutique grâce aux améliorations apportées par le contrôle local. Pour traiter le gliobastome par PDT, une première approche a consisté à coupler un peptide, à un photosensibilisateur (la chlorine) via un bras espaceur Ahx (acide aminohexanoïque). Le peptide utilisé (ATWLPPR) est un ligand spécifique du récepteur neuropiline 1 (NRP-1). NRP-1 est lui-même un co-récepteur au récepteur du facteur vasculaire de croissance endothéliale (VEGFR) qui est surexprimé au niveau des néovaisseaux et qui favorise la néoangiogenèse au cours du développement des tumeurs solides. L'assemblage PS-Ahx-ATWLPPR a montré une stabilité peptidique in vivo et in vitro avec une bonne pharmacocinétique et une bonne biodistribution. Ses efficacités anti-tumorales et anti-vasculaires ont notamment été prouvées. Cependant, in vivo, le peptide ATWLPPR montrait une dégradation par le système réticulo-endothélial et l'assemblage présentait une affinité moindre pour NRP-1 par rapport au peptide seul. Afin de résoudre ces problèmes, une nouvelle stratégie décrite dans cette thèse a consisté à développer des nanoparticules multifonctionnelles. Ces nanoparticules sont constituées d'un coeur d'oxyde de gadolinium (Gd2O3) pour permettant un réhaussement de contraste positif en IRM, enrobé d'une couche de polysiloxane biocompatible dans laquelle est greffé le photosensibilisateur par liaison amide. La nanoparticule est ensuite fonctionnalisée en surface avec des agents chélatants (DOTA, DTPA) par l'intermédiaire de fonctions amines libres de la couche de polysiloxane. Les peptides de type ATWLPPR sont greffés sur les agents chélatants, ce qui permet un ciblage spécifique de NRP-1. De cette façon, on obtient des nanoparticules qui offrent à la fois une possibilité de ciblage actif des néovaisseaux tumoraux, de visualisation par IRM et un effet PDT. Dans l'objectif d'obtenir un effet PDT optimal, une augmentation du contraste en imagerie IRM et une sélectivité maximale pour les cellules endothéliales, un plan d'expérience a été élaboré. Chaque lot du plan d'expérience a été synthétisé en faisant varier la composition chimique du coeur, l'épaisseur de la couche de polysiloxane, le nombre de photosensibilisateurs, le type de surfactant, le nombre et le type de peptides. Une fois la synthèse et la purification de ces nanoparticules effectuées, chaque lot a été caractérisé pour vérifier la conservation des propriétés photophysiques, en particulier la formation d'oxygène singulet. Des études biologiques sur des cellules tumorales de type MDA-MB-231 et U87 ont été réalisées, pour étudier la cytototoxicité, la phototoxicité et le réhaussement de contraste IRM de ces nanoparticules / Photodynamic therapy (PDT) involves molecules called photosensitizers (PS), molecular oxygen and light. PS are non-cytotoxic in the dark but produce reactive oxygen species (ROS) when they are excited with light of an appropriate wavelength in the presence of oxygen. ROS include oxygen radicals and singlet oxygen (1O2), which is the main form of ROS formed during PDT processes. In the presence of living tissue, 1O2 leads to cell death by apoptosis or necrosis. To improve photodynamic efficiency, a strategy developed by scientists consists in improving the selectivity of the treatment. The treatment of primary malignant brain tumors, including glioblastoma multiforme (GBM or astrocytoma level IV) which is the most aggressive form, remains a challenge. When it is possible, surgery is performed by removing the central volume of the tumor, while infiltrating peripheral zone is treated by additional treatments. Despite advances in neurosurgery and radiotherapy, the life expectancy at 5 years after the tumor detection does not exceed 10 %. PDT appears as an alternative treatment. In preliminary study a photosensitizer (chlorin) coupled to a peptide (ATWLPPR) through an Ahx linker (aminohexanoic acid) has been designed. The peptide is a specific ligand of neuropilin-1 receptor (NRP-1). NRP-1 is a co-receptor of vascular endothelial growth factor receptor (VEGFR) overexpressed in neovessels and which promotes the formation of new vessels during the development of solid tumors. This targeted photosensitizer presented a peptidic stability in vivo and in vitro with good pharmacokinetic and biodistribution. Its anti-tumor and anti-vascular efficiencies have been proven. However, the ATWLPPR peptide showed degradation in the reticuloendothelial system (RES) and a reduced affinity for NRP-1 compared with peptide alone. To solve these problems, a new strategy using multifunctional nanoparticles has been developed in this thesis. The nanoparticles consist of a core of gadolinium oxide (Gd2O3) for MRI contrast, coated with a layer of biocompatible polysiloxane wherein the photosensitizer is covalenty grafted. The nanoparticle surface is functionalized by chelating agents (DOTA, DTPA) via free amine functions of the polysiloxane layer. ATWLPPR peptides are grafted on chelating agents, which allows specific targeting of NRP-1. Nanoparticles allow a MRI visualization, a PDT effect and an active targeting of the tumor neovasculature. With the aim to obtain an optimal PDT effect, an enhancement of contrast in MRI imaging and a high selectivity for endothelial cells, an experimental design has been developed. Each batch of the experimental design was synthesized with various chemical compositions of the core, the size of the polysiloxane layer, the number of photosensitizers, the number and the type of peptides and the type of surfactant. Once the synthesis and purification of these nanoparticles done, each batch was characterized to ensure the conservation of the photophysical properties, in particular the formation of the singlet oxygen. Biological studies on tumor cell type MDA- MB-231 and U87 were carried out, especially their cytototoxicity and phototoxicity

Page generated in 0.0259 seconds