Spelling suggestions: "subject:"1atrix metalloproteinases (MMP)"" "subject:"1atrix metalloproteinasess (MMP)""
1 |
CONSEQUENCE OF MMP-9 DEFICIENCY ON INTRAOCULAR PRESSURE REGULATION AND RETINAL GANGLION CELL SURVIVALSiwakoti, Anuja January 2014 (has links)
Matrix metalloproteinases (MMPs) are known to be the mediators of extracellular matrix remodeling. Increased levels of matrix metalloproteinases, particularly MMP-9, have been found in the aqueous humor of patients with glaucoma. However the exact role of MMP-9 in glaucomatous changes is not understood. Previous results from the West-Mays’ lab indicated that MMP-9 deficient (knockout - KO) mice exhibit elevated IOP, in the absence of distinct morphological changes in the anterior chamber.
In the current thesis, I investigated whether the elevated IOP in MMP-9KO mice leads to RGC death. Wild type and KO littermates at different age groups: 2-3 months, 3-4 months, 6-8 and 9-12 months were studied. IOP was measured using TonoLab rebound tonometer. My results demonstrated that IOP was significantly increased in MMP-9KO mice compared to control littermates at all ages examined. To investigate if the elevated IOP was due to a difference in central corneal thickness (CCT), CCT measurements were made between WT and KO mice using ultrasound pachymeter. There was no difference in CCT demonstrating that the elevated IOP observed in MMP-9KO mice was not related to changes in corneal thickness. To determine whether the elevated IOP led to RGC death, the animals were sacrificed, eyes were enucleated and retinas (n=4) from both WT and KO animals were dissected and stained with Brn-3a antibody. Additional eyes were harvested from both WT and KO mice for histological and immunofluorescence studies. I found no observable difference in Brn3a+ RGC count between MMP9-WT and KO mice. Furthermore, no difference in retinal morphology, glial reactivity and laminin expression between WT and KO mice was observed. In the future it will be important to investigate whether elevated IOP in the MMP-9KO mice leads to optic nerve axonal loss and further investigate the possibility that the MMP-9KO retina is neuroprotected. / Thesis / Master of Science (MSc)
|
2 |
Conception, élaboration et caractérisation photophysiques et biochimiques de molécules photoactivables pour la thérapie photodynamique / Selective antitumor effect in PhotoDynamic Therapy mediated by photo-activable molecules, activated by endopeptidasesVerhille, Marc 25 October 2012 (has links)
L'angiogenèse est une étape clef dans le processus de progression tumorale. Elle est caractérisée par une surexpresssion d'un grand nombre de métalloprotéinases matricielles (MMP). Parmis ces MMP, les gélatinases (MMP-2 et MMP-9) sont connues pour jouer un rôle important dans l'angiogenèse tumorale et la croissance de nombreux cancers. Les "Photodynamic Molecular Beacon" (PMB) sont des constructions moléculaires qui peuvent être utilisées dans le traitement de cancers en associant un photosensibilisateur (PS) de type chlorine et un inhibiteur d'états excités, aussi appelé "Quencher", liés par un peptide substrat des gélatinases afin d'inhiber la toxicité du PS dans les cellules non ciblées, et de restaurer sa toxicité uniquement à proximité des gélatinases. Nous avons donc cherché à déterminer le couple PS/quencher permettant la meilleure inhibition de la production d'oxygène singulet, principale source de la toxicité du PS, puis avons synthétisé une famille de PMB ciblant les gélatinases. Différents peptides et bras espaceurs ont été utilisés pour évaluer l'influence de la distance entre le PS et le quencher sur les propriétés photophysiques et l'activation enzymatique du PMB / Angiogenesis is a key step in the tumoral progression process. It is characterized by an over-expression of a number of matrix metalloproteinases (MMP). Among these MMPs, gelatinases (MMP-2 and MMP-9) are known to play a critical role in tumor angiogenesis and the growth of many cancers. Photodynamic Molecular Beacons (PMB) can be designed for cancer treatment by associating a chlorin-like photosensitizer and a black hole quencher linked by a gelatinase substrate peptide with the aim of silencing photosensitizer toxicity in non-targeted cells and restore its toxicity only in surrounding gelatinases. We investigated the PS/quencher pair allowing the best singlet oxygen production inhibition, and then we synthesized a novel family of PMB triggering gélatinases MMP-2 and MMP-9. Different lengths of peptide and spacers were used in order to determinate the influence of the distance between PS and quencher on the PMB photophysical properties and enzymatic activation.
|
3 |
COLLECTIVE CELL MIRATION DURING HEART MORPHOGENESIS IN DROSOPHILA REQUIRES GUIDANCE SIGNALING AND EXTRACELLULAR MATRIX REMODELLING / COLLECTIVE CELL MIGRATION OF CARDIOBLASTS DURING HEART MORPHOGENESISRaza, Qanber 11 1900 (has links)
Collective cell migration is a defining feature of many morphogenetic processes.
Diseases such as congenital heart diseases and cancer arise due to mis-regulation of
collective migratory behaviour and animal models have played a pivotal role in dissecting
the molecular mechanisms which underlie this process. During embryonic heart
development, cardiac precursors undergo a stage of collective migration in both
vertebrates and invertebrates. We developed a paradigm to quantitatively assess collective
cell migration of cardiac precursors in live embryos of Drosophila, which is the simplest
genetic model organism with a heart. Therefore, we studied processes which are
commonly observed in most collective cell migration models such as guidance signalling
and extracellular matrix remodelling. Our results demonstrate that leading edge of
migrating cardioblasts is highly active and that this behaviour is regulated by guidance
cues, Slit and Netrin and their respective receptors Robo/Robo2 and Frazzled/Uncoordinated5.
These molecules cooperatively promote leading edge motility and epithelial
characteristics of the cardioblasts. Next, we determined that matrix restructuring around
the cardioblasts requires proteases Mmp1 and Mmp2, which are members of the highly
conserved Matrix Metalloproteinase family. We demonstrate that Mmp1 and Mmp2 have
distinct roles during lumen formation, however, both Mmp1 and Mmp2 are required for
collective motility of the cardioblast leading edge. Hence, we propose that embryonic
heart development in Drosophila is an effective and amenable model of collective cell
migration which can be applied to discover unique mechanisms which coordinate cell
movement in groups. / Thesis / Doctor of Philosophy (PhD)
|
4 |
Extracellular Matrix Synthesis and Remodeling by Mesenchymal Stromal Cells Is Context-SensitiveBurk, Janina, Sassmann, Anna, Kasper, Cornelia, Nimptsch, Ariane, Schubert, Susanna 16 January 2024 (has links)
Matrix remodeling could be an important mode of action of multipotent mesenchymal
stromal cells (MSC) in extracellular matrix (ECM) disease, but knowledge is limited in this respect.
As MSC are well-known to adapt their behavior to their environment, we aimed to investigate
if their mode of action would change in response to healthy versus pathologically altered ECM.
Human MSC-derived ECM was produced under different culture conditions, including standard
culture, culture on Matrigel-coated dishes, and stimulation with the pro-fibrotic transforming growth
factor-1 (TGF1). The MSC-ECM was decellularized, characterized by histochemistry, and used
as MSC culture substrate reflecting different ECM conditions. MSC were cultured on the different
ECM substrates or in control conditions for 2 days. Culture on ECM increased the presence of surface
molecules with ECM receptor function in the MSC, demonstrating an interaction between MSC
and ECM. In MSC cultured on Matrigel-ECM and TGF1-ECM, which displayed a fibrosis-like
morphology, gene expression of collagens and decorin, as well as total matrix metalloproteinase
(MMP) activity in the supernatant were decreased as compared with control conditions. These
results demonstrated that MSC adapt to their ECM environment, which may include pathological
adaptations that could compromise therapeutic efficacy.
|
Page generated in 0.0932 seconds