Return to search

Performance analysis: CNN model on smartphones versus on cloud : With focus on accuracy and execution time

In the modern digital landscape, mobile devices serve as crucial data generators.Their usage spans from simple communication to various applications such as userbehavior analysis and intelligent applications. However, privacy concerns associatedwith data collection are persistent. Deep learning technologies, specifically Convo-lutional Neural Networks, have been increasingly integrated into mobile applicationsas a promising solution. In this study, we evaluated the performance of a CNN im-plemented on iOS smartphones using the CIFAR-10 data set, comparing the model’saccuracy and execution time before and after conversion for on-device deployment.The overarching objective was not to design the most accurate model but to inves-tigate the feasibility of deploying machine learning models on-device while retain-ing their accuracy. The results revealed that both on-cloud and on-device modelsyielded high accuracy (93.3% and 93.25%, respectively). However, a significantdifference was observed in the total execution time, with the on-device model re-quiring a considerably longer duration (45.64 seconds) than the cloud-based model(4.55 seconds). This study provides insights into the performance of deep learningmodels on iOS smartphones, aiding in understanding their practical applications andlimitations.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-124986
Date January 2023
CreatorsKlas, Stegmayr, Edwin, Johansson
PublisherLinnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds