Return to search

A residual a posteriori error estimator for the eigenvalue problem for the Laplace-Beltrami operator

The Laplace-Beltrami operator corresponds to the Laplace operator on curved surfaces. In this paper, we consider an eigenvalue problem for the Laplace-Beltrami operator on subdomains of the unit sphere in $\R^3$. We develop a residual a posteriori error estimator for the eigenpairs and derive a reliable estimate for the eigenvalues. A global parametrization of the spherical domains and a carefully chosen finite element discretization allows us to use an approach similar to the one for the two-dimensional case. In order to assure results in the quality of those for plane domains, weighted norms and an adapted Clément-type interpolation operator have to be introduced.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:18594
Date06 September 2006
CreatorsPester, Cornelia
PublisherTechnische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint, info:eu-repo/semantics/preprint, doc-type:Text
SourcePreprintreihe des Chemnitzer SFB 393, 05-01
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds