Return to search

Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces

Thesis advisor: Martin J. Bridgeman / Thesis advisor: Ian Biringer / The first part of this dissertation is on the quasiconformal homogeneity of surfaces. In the vein of Bonfert-Taylor, Bridgeman, Canary, and Taylor we introduce the notion of quasiconformal homogeneity for closed oriented hyperbolic surfaces restricted to subgroups of the mapping class group. We find uniform lower bounds for the associated quasiconformal homogeneity constants across all closed hyperbolic surfaces in several cases, including the Torelli group, congruence subgroups, and pure cyclic subgroups. Further, we introduce a counting argument providing a possible path to exploring a uniform lower bound for the nonrestricted quasiconformal homogeneity constant across all closed hyperbolic surfaces. We then move on to identities on hyperbolic manifolds. We study the statistics of the unit geodesic flow normal to the boundary of a hyperbolic manifold with non-empty totally geodesic boundary. Viewing the time it takes this flow to hit the boundary as a random variable, we derive a formula for its moments in terms of the orthospectrum. The first moment gives the average time for the normal flow acting on the boundary to again reach the boundary, which we connect to Bridgeman's identity (in the surface case), and the zeroth moment recovers Basmajian's identity. Furthermore, we are able to give explicit formulae for the first moment in the surface case as well as for manifolds of odd dimension. In dimension two, the summation terms are dilogarithms. In dimension three, we are able to find the moment generating function for this length function. / Thesis (PhD) — Boston College, 2015. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Mathematics.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_104137
Date January 2015
CreatorsVlamis, Nicholas George
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author. This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0012 seconds