• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geodesic knots in hyperbolic 3 manifolds

Kuhlmann, Sally Malinda January 2005 (has links) (PDF)
This thesis is an investigation of simple closed geodesics, or geodesic knots, in hyperbolic 3-manifolds. / Adams, Hass and Scott have shown that every orientable finite volume hyperbolic 3-manifold contains at least one geodesic knot. The first part of this thesis is devoted to extending this result. We show that all cusped and many closed orientable finite volume hyperbolic 3-manifolds contain infinitely many geodesic knots. This is achieved by studying infinite families of closed geodesics limiting to an infinite length geodesic in the manifold. In the cusped manifold case the limiting geodesic runs cusp-to-cusp, while in the closed manifold case its ends spiral around a short geodesic in the manifold. We show that in the above manifolds infinitely many of the closed geodesics in these families are embedded. / The second part of the thesis is an investigation into the topology of geodesic knots, and is motivated by Thurston’s Geometrization Conjecture relating the topology and geometry of 3-manifolds.We ask whether the isotopy class of a geodesic knot can be distinguished topologically within its homotopy class. We derive a purely topological description for infinite subfamilies of the closed geodesics studied previously in cusped manifolds, and draw explicit projection diagrams for these geodesics in the figure-eight knot complement. This leads to the result that the figure-eight knot complement contains geodesics of infinitely many different knot types in the3-sphere when the figure-eight cusp is filled trivially. / We conclude with a more direct investigation into geodesic knots in the figure-eight knot complement. We discuss methods of locating closed geodesics in this manifold including ways of identifying their isotopy class within a free homotopy class of closed curves. We also investigate a specially chosen class of knots in the figure-eight knot complement, namely those arising as closed orbits in its suspension flow. Interesting examples uncovered here indicate that geodesics of small tube radii may be difficult to distinguish topologically in their free homotopy class.
2

Identities on hyperbolic manifolds and quasiconformal homogeneity of hyperbolic surfaces

Vlamis, Nicholas George January 2015 (has links)
Thesis advisor: Martin J. Bridgeman / Thesis advisor: Ian Biringer / The first part of this dissertation is on the quasiconformal homogeneity of surfaces. In the vein of Bonfert-Taylor, Bridgeman, Canary, and Taylor we introduce the notion of quasiconformal homogeneity for closed oriented hyperbolic surfaces restricted to subgroups of the mapping class group. We find uniform lower bounds for the associated quasiconformal homogeneity constants across all closed hyperbolic surfaces in several cases, including the Torelli group, congruence subgroups, and pure cyclic subgroups. Further, we introduce a counting argument providing a possible path to exploring a uniform lower bound for the nonrestricted quasiconformal homogeneity constant across all closed hyperbolic surfaces. We then move on to identities on hyperbolic manifolds. We study the statistics of the unit geodesic flow normal to the boundary of a hyperbolic manifold with non-empty totally geodesic boundary. Viewing the time it takes this flow to hit the boundary as a random variable, we derive a formula for its moments in terms of the orthospectrum. The first moment gives the average time for the normal flow acting on the boundary to again reach the boundary, which we connect to Bridgeman's identity (in the surface case), and the zeroth moment recovers Basmajian's identity. Furthermore, we are able to give explicit formulae for the first moment in the surface case as well as for manifolds of odd dimension. In dimension two, the summation terms are dilogarithms. In dimension three, we are able to find the moment generating function for this length function. / Thesis (PhD) — Boston College, 2015. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Mathematics.
3

Structures de Clifford paires et résonances quantiques / Even Clifford structures and Quantum Resonances

Hadfield, Charles 19 June 2017 (has links)
Ce manuscrit se compose de deux parties indépendantes. La première partie de cette thèse étudie les structures de Clifford paires. Pour une variété riemannienne munie d’une structure de Clifford paire, nous introduisons l’espace de twisteurs en généralisant la construction d’un tel espace dans le cas d’une variété quaternion-hermitienne. Nous construisons une structure presque-complexe sur l’espace de twisteurs et considérons son intégrabilité lorsque la structure de Clifford est parallèle. Dans certains cas, nous pouvons aussi le fournir d’une métriquekählerienne ou, correspondant à une structure presque-complexe alternative, d’une métrique “nearly Kähler”. Dans un second temps, nous introduisons une structure appelée Clifford-Weyl sur une variété conforme. Il s’agit d’une structure de Clifford paireq ui est parallèle par rapport au produit tensoriel d’une connexion métrique sur le fibré de Clifford et une connexion de Weyl. Nous démontrons que la connexion de Weyl est fermée sauf dans certains cas génériques de basse dimension où nous arrivons à décrire des exemples explicites où les structures de Clifford-Weyl sont non-fermées. La seconde partie de cette thèse étudie des résonances quantiques. Au-dessus d’une variété asymptotiquement hyperbolique paire, nous considérons le laplacien de Lichnerowicz agissant sur les sections du fibré des formes multilinéaires symétriques.Lorsqu’il s’agit de formes bilinéaires symétriques, nous obtenonsune extension méromorphe de la résolvante dudit laplacien à l’ensemble du plan complexe si la variété est Einstein. Cela définit les résonances quantiques pour ce laplacien. Pour les formes multilinéaires symétriques en général, une telle extension méromorphe est possible si la variété est convexe-cocompacte. Dans les deux cas, nous devons restreindre le laplacien aux sections qui sont de trace et de divergence nulles. Nous utilisons ce deuxième résultat afin d’établir une correspondance classique-quantique pour les variétés hyperboliques convexescocompactes.La correspondance identifie le spectre du flot géodésique (les résonances de Ruelle) avec les spectres des laplaciens agissant sur les tenseurs symétriques qui sont de trace et de divergence nulles (les résonances quantiques). / We study independently even Clfford structures on Riemannian manifolds and quantum resonances on asymptotically hyperbolic manifolds. In the first part of this thesis, we study even Clifford structures.First, we introduce the twistor space of a Riemannian manifold with an even Clifford structure. This notion generalises the twistor space of quaternion-Hermitian manifolds. We construct almost complex structures on the twistor space and check their integrability when the even Clifford structure is parallel. In some cases we give Kähler and nearly-Kähler metrics to these spaces. Second, we introduce the concept of a Clifford-Weyl structure on a conformal manifold. This consists of an even Clifford structure parallel with respect to the tensor product of a metric connection on the Clifford bundle and a Weyl structure on the manifold. We show that the Weyl structure is necessarily closed except for some “generic” low-dimensional instances,where explicit examples of non-closed Clifford-Weyl structures are constructed. In the second part of this thesis, we study quantum resonances. First, we consider the Lichnerowicz Laplacian acting on symmetric 2-tensors on manifolds with an even Riemannian conformally compact Einstein metric. The resolvent of the Laplacian,upon restriction to trace-free, divergence-free tensors, is shown to have a meromorphic continuation to the complex plane. This defines quantum resonances for this Laplacian. For higher rank symmetric tensors, a similar result is proved for convex cocompact quotients of hyperbolic space. Second, we apply this result to establish a direct classical-quantum correspondence on convex cocompact hyperbolic manifolds. The correspondence identifies the spectrum of the geodesic flow with the spectrum of the Laplacian acting on trace-free, divergence-free symmetric tensors. This extends the correspondence previously obtained for cocompact quotients
4

Structure de variété de Hilbert et masse sur l'ensemble des données initiales relativistes faiblement asymptotiquement hyperboliques / Hilbert manifold structure and mass on the set of weakly asymptotically hyperbolic relativistic initial data

Fougeirol, Jérémie 30 June 2017 (has links)
La relativité générale est une théorie physique de la gravitation élaborée il y a un siècle, dans laquelle l'univers est modélisé par une variété Lorentzienne (N,gamma) de dimension 4 appelée espace-temps et vérifiant les équations d'Einstein. Lorsque l'on sépare la dimension temporelle des trois dimensions spatiales, les équations de contrainte découlent naturellement de la décomposition 3+1 des équations d'Einstein. Elles constituent une condition nécessaire et suffisante pour pouvoir considérer l'espace-temps N comme l'évolution temporelle d'une hypersurface Riemannienne (m,g) plongée dans N avec une seconde forme fondamentale K. Le triplet (m,g,K) constitue alors une donnée initiale solution des équations de contrainte dont on note C l'ensemble. Dans cette thèse, nous utilisons la méthode de Robert Bartnik pour établir la structure de sous-variété de Hilbert de C pour des données initiales faiblement asymptotiquement hyperboliques, dont la régularité peut être reliée à la conjecture de courbure L^{2} bornée. Les difficultés inhérentes au cas faiblement AH ont nécessité l'introduction de deux opérateurs différentiels d'ordre deux et l'obtention d'estimées de type Poincaré et Korn pour ces opérateurs. Une fois la structure de Hilbert obtenue, nous définissons une fonctionnelle masse lisse sur la sous-variété C et compatible avec nos conditions de faible régularité. L'invariance géométrique de la masse est étudiée et montrée, modulo une conjecture en faible régularité relative au changement de cartes au voisinage de l'infini. Enfin, nous faisons le lien entre les points critiques de la masse et les métriques statiques. / General relativity is a gravitational theory born a century ago, in which the universe is a 4-dimensional Lorentzian manifold (N,gamma) called spacetime and satisfying Einstein's field equations. When we separate the time dimension from the three spatial ones, constraint equations naturally follow on from the 3+1 décomposition of Einstein's equations. Constraint equations constitute a necessary condition,as well as sufficient, to consider the spacetime N as the time evolution of a Riemannian hypersurface (m,g) embeded into N with the second fundamental form K. (m,g,K) is then an element of C, the set of initial data solutions to the constraint equations. In this work, we use Robert Bartnik's method to provide a Hilbert submanifold structure on C for weakly asymptotically hyperbolic initial data, whose regularity can be related to the bounded L^{2} curvature conjecture. Difficulties arising from the weakly AH case led us to introduce two second order differential operators and we obtain Poincaré and Korn-type estimates for them. Once the Hilbert structure is properly described, we define a mass functional smooth on the submanifold C and compatible with our weak regularity assumptions. The geometrical invariance of the mass is studied and proven, only up to a weak regularity conjecture about coordinate changes near infinity. Finally, we make a correspondance between critical points of the mass and static metrics.
5

Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifolds

Ramos, Álvaro Krüger January 2015 (has links)
Provamos resultados sobre a geometria de hipersuperfícies em diferentes espaços ambiente. Primeiro, definimos uma aplicação de Gauss generalizada para uma hipersuperfície Mn-1 c/ Nn, onde N é um espaço simétrico de dimensão n ≥ 3. Em particular, generalizamos um resultado de Ruh-Vilms e apresentamos aplicações. Em seguida, estudamos superfícies em espaços de dimensão 3: estudamos a equação da curvatura média em um produto semidireto R2oAR e obtemos estimativas da altura e a existência de gráficos mínimos do tipo Scherk. Finalmente, no espaço ambiente de uma variedade hiperbólica de dimensão 3: nós apresentamos condições suficientes para que um mergulho completo de uma superfície ∑ de topologia finita em N com curvatura média |H∑| ≤ 1 seja próprio. / We prove results concerning the geometry of hypersurfaces on di erent ambient spaces. First, we de ne a generalized Gauss map for a hypersurface Mn-1 c/ Nn, where N is a symmetric space of dimension n ≥ 3. In particular, we generalize a result due to Ruh-Vilms and make some applications. Then, we focus on surfaces on spaces of dimension 3: we study the mean curvature equation of a semidirect product R2 oA R to obtain height estimates and the existence of a Scherk-like minimal graph. Finally, on the ambient space of a hyperbolic manifold N of dimension 3 we give su cient conditions for a complete embedding of a nite topology surface ∑ on N with mean curvature |H∑| ≤ 1 to be proper.
6

Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifolds

Ramos, Álvaro Krüger January 2015 (has links)
Provamos resultados sobre a geometria de hipersuperfícies em diferentes espaços ambiente. Primeiro, definimos uma aplicação de Gauss generalizada para uma hipersuperfície Mn-1 c/ Nn, onde N é um espaço simétrico de dimensão n ≥ 3. Em particular, generalizamos um resultado de Ruh-Vilms e apresentamos aplicações. Em seguida, estudamos superfícies em espaços de dimensão 3: estudamos a equação da curvatura média em um produto semidireto R2oAR e obtemos estimativas da altura e a existência de gráficos mínimos do tipo Scherk. Finalmente, no espaço ambiente de uma variedade hiperbólica de dimensão 3: nós apresentamos condições suficientes para que um mergulho completo de uma superfície ∑ de topologia finita em N com curvatura média |H∑| ≤ 1 seja próprio. / We prove results concerning the geometry of hypersurfaces on di erent ambient spaces. First, we de ne a generalized Gauss map for a hypersurface Mn-1 c/ Nn, where N is a symmetric space of dimension n ≥ 3. In particular, we generalize a result due to Ruh-Vilms and make some applications. Then, we focus on surfaces on spaces of dimension 3: we study the mean curvature equation of a semidirect product R2 oA R to obtain height estimates and the existence of a Scherk-like minimal graph. Finally, on the ambient space of a hyperbolic manifold N of dimension 3 we give su cient conditions for a complete embedding of a nite topology surface ∑ on N with mean curvature |H∑| ≤ 1 to be proper.
7

Constant mean curvature hypersurfaces on symmetric spaces, minimal graphs on semidirect products and properly embedded surfaces in hyperbolic 3-manifolds

Ramos, Álvaro Krüger January 2015 (has links)
Provamos resultados sobre a geometria de hipersuperfícies em diferentes espaços ambiente. Primeiro, definimos uma aplicação de Gauss generalizada para uma hipersuperfície Mn-1 c/ Nn, onde N é um espaço simétrico de dimensão n ≥ 3. Em particular, generalizamos um resultado de Ruh-Vilms e apresentamos aplicações. Em seguida, estudamos superfícies em espaços de dimensão 3: estudamos a equação da curvatura média em um produto semidireto R2oAR e obtemos estimativas da altura e a existência de gráficos mínimos do tipo Scherk. Finalmente, no espaço ambiente de uma variedade hiperbólica de dimensão 3: nós apresentamos condições suficientes para que um mergulho completo de uma superfície ∑ de topologia finita em N com curvatura média |H∑| ≤ 1 seja próprio. / We prove results concerning the geometry of hypersurfaces on di erent ambient spaces. First, we de ne a generalized Gauss map for a hypersurface Mn-1 c/ Nn, where N is a symmetric space of dimension n ≥ 3. In particular, we generalize a result due to Ruh-Vilms and make some applications. Then, we focus on surfaces on spaces of dimension 3: we study the mean curvature equation of a semidirect product R2 oA R to obtain height estimates and the existence of a Scherk-like minimal graph. Finally, on the ambient space of a hyperbolic manifold N of dimension 3 we give su cient conditions for a complete embedding of a nite topology surface ∑ on N with mean curvature |H∑| ≤ 1 to be proper.
8

Géométrie et dynamique des structures Hermite-Lorentz / Geometry and Dynamics of Hermite-Lorentz structures

Ben Ahmed, Ali 06 July 2013 (has links)
Dans la veine du programme d'Erlangen de Klein, travaux d'E. Cartan, M. Gromov, et d'autres, ce travail se trouve à cheval, entre la géométrie et les actions de groupes. Le thème global serait de comprendre les groupes d'isométries des variétés pseudo-riemanniennes. Plus précisément, suivant une "conjecture vague" de Gromov, classifier les variétés pseudo-riemanniennes dont le groupe d'isométries agit non-proprement, i.e. que son action ne préserve pas de métrique riemannienne auxiliaire?Plusieurs travaux ont été accomplis dans le cas des métriques lorentziennes (i.e. de signature (- +...+)). En revanche, le cas pseudo-riemannien général semble hors de portée.Les structures Hermite-Lorentz se trouvent entre le cas lorentzien et le premier cas pseudo-riemannien général, i.e. de signature (- - +…+). De plus, elle se définit sur des variétés complexes, et promet une extra-rigidité. Plus précisément, une structure Hermite-Lorentz sur une variété complexe consiste en une métrique pseudo-riemannienne de signature (- - +…+) qui est hermitienne au sens qu'elle est invariante par la structure presque complexe. Par analogie au cas hermitien classique, on définit naturellement une notion de métrique Kähler-Lorentz.Comme exemple, on a l'espace de Minkowski complexe ; dans un certain sens, on a un temps de dimension 1 complexe (du point de vue réel, le temps est 2-dimensionnel). On a également l'espace de Sitter et anti de Sitter complexes. Ils ont une courbure holomorphe constante, et généralisent dans ce sens les espaces projectifs et hyperboliques complexes.Cette thèse porte sur les variétés Hermite-Lorentz homogènes. En plus des exemples cités, il y a deux autres espaces symétriques, qui peuvent naturellement jouer le rôle de complexification des espaces de Sitter et anti de Sitter réels.Le résultat principal de la thèse est un théorème de rigidité de ces espaces symétriques : tout espace Hermite-Lorentz homogène à isotropie irréductible est l'un des cinq espaces symétriques précédents. D'autres résultats concernent le cas où l'on remplace l'hypothèse d'irréductibilité par le fait que le groupe d'isométries soit semi-simple. / In the vein of Klein's Erlangen program, the research works of E. Cartan, M.Gromov and others, this work straddles between geometry and group actions. The overall theme is to understand the isometry groups of pseudo-Riemannian manifolds. Precisely, following a "vague conjecture" of Gromov, our aim is to classify Pseudo-Riemannian manifolds whose isometry group act’s not properly, i.e that it’s action does not preserve any auxiliary Riemannian metric. Several studies have been made in the case of the Lorentzian metrics (i.e of signature (- + .. +)). However, general pseudo-Riemannian case seems out of reach. The Hermite-Lorentz structures are between the Lorentzian case and the former general pseudo-Riemannian, i.e of signature (- -+ ... +). In addition, it’s defined on complex manifolds, and promises an extra-rigidity. More specifically, a Hermite-Lorentz structure on a complex manifold is a pseudo-Riemannian metric of signature (- -+ ... +), which is Hermitian in the sense that it’s invariant under the almost complex structure. By analogy with the classical Hermitian case, we naturally define a notion of Kähler-Lorentz metric. We cite as example the complex Minkowski space in where, in a sense, we have a one-dimensional complex time (the real point of view, the time is two-dimensional). We cite also the de Sitter and Anti de Sitter complex spaces. They have a constant holomorphic curvature, and generalize in this direction the projective and complex hyperbolic spaces.This thesis focuses on the Hermite-Lorentz homogeneous spaces. In addition with given examples, two other symmetric spaces can naturally play the role of complexification of the de Sitter and anti de Sitter real spaces.The main result of the thesis is a rigidity theorem of these symmetric spaces: any space Hermite-Lorentz isotropy irreducible homogeneous is one of the five previous symmetric spaces. Other results concern the case where we replace the irreducible hypothesis by the fact that the isometry group is semisimple.

Page generated in 0.0933 seconds