Cette thèse s'inscrit dans le cadre de l'apprentissage statistique et est consacrée à l'étude de la méthode des forêts aléatoires, introduite par Breiman en 2001. Les forêts aléatoires sont une méthode statistique non paramétrique, qui s'avère être très performante dans de nombreuses applications, aussi bien pour des problèmes de régression que de classification supervisée. Elles présentent également un bon comportement sur des données de très grande dimension, pour lesquelles le nombre de variables dépasse largement le nombre d'observations. Dans une première partie, nous développons une procédure de sélection de variables, basée sur l'indice d'importance des variables calculée par les forêts aléatoires. Cet indice d'importance permet de distinguer les variables pertinentes des variables inutiles. La procédure consiste alors à sélectionner automatiquement un sous-ensemble de variables dans un but d'interprétation ou de prédiction. La deuxième partie illustre la capacité de cette procédure de sélection de variables à être performante pour des problèmes très différents. La première application est un problème de classification en très grande dimension sur des données de neuroimagerie, alors que la seconde traite des données génomiques qui constituent un problème de régression en plus petite dimension. Une dernière partie, théorique, établit des bornes de risque pour une version simplifiée des forêts aléatoires. Dans un contexte de régression, avec une seule variable explicative, nous montrons d'une part que les estimateurs associés à un arbre et à une forêt atteignent tous deux la vitesse minimax de convergence, et d'autre part que la forêt apporte une amélioration en réduisant la variance de l'estimateur d'un facteur de trois quarts.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00550989 |
Date | 24 November 2010 |
Creators | Genuer, Robin |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0024 seconds