Parkinsonian syndrome is an umbrella term including several diseases with similar symptoms. PET images are key when differential diagnosing patients with parkinsonsian syndrome. In this work two automatic diagnosing models are developed and evaluated, with PET images as input, and a diagnosis as output. The two devoloped models are evaluated based on performance, in terms of sensitivity, specificity and misclassification error. The models consists of 1) regression model and 2) either a decision tree or a random forest. Two coefficients, alpha and beta, are introduced to train and test the models. The coefficients are the output from the regression model. They are calculated with multiple linear regression, with the patient images as dependent variables, and mean images of four patient groups as explanatory variables. The coefficients are the underlying relationship between the two. The four patient groups consisted of 18 healthy controls, 21 patients with Parkinson's disease, 17 patients with dementia with Lewi bodies and 15 patients with vascular parkinsonism. The models predict the patients with misclassification errors of 27% for the decision tree and 34% for the random forest. The patient group which is easiest to classify according to both models is healthy controls. The patient group which is hardest to classify is vascular parkinsonism. These results implies that alpha and beta are interesting outcomes from PET scans, and could, after further development of the model, be used as a guide when diagnosing in the models developed.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-413638 |
Date | January 2020 |
Creators | Löwe, Rakel, Schneider, Ida |
Publisher | Uppsala universitet, Tillämpad kärnfysik, Uppsala universitet, Tillämpad kärnfysik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC F, 1401-5757 ; 20019 |
Page generated in 0.0043 seconds