Dissertação (mestrado) - Universidade Federal de Santa Catarina. Centro de Ciencias Fisicas e Matematicas / Made available in DSpace on 2012-10-16T01:41:13Z (GMT). No. of bitstreams: 0Bitstream added on 2016-01-08T16:06:12Z : No. of bitstreams: 1
81779.pdf: 1134439 bytes, checksum: 3a7d46a6cf731cb8b57c4b1815f21112 (MD5) / O objetivo anunciado no título desta tese é realizado do seguinte modo: No capítulo I selecionamos definições de estruturas algébricas e de álgebra linear que usaremos nos capítulos posteriores. No capítulo II introduzimos a noção de álgebra de clifford. Estabelecemos a sua unicidade (a menos de isomorfismo) e determinamos a sua dimensão. No capítulo III tratamos da existência das álgebras de Clifford por meio de uma construção matricial explícita e formulamos uma série de critérios e teoremas que reduzem esta construção aos casos em que o espaço ortogonal é de dimensão menor que 5. Finalmente, no capítulo IV aplicamos os resultados obtidos na construção do recobrimento do grupo Spin(n) pelo grupo SO(n) e na construção da sequência de Radon-Hurwitz-Eckman.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufsc.br:123456789/75476 |
Date | January 1988 |
Creators | Araujo, Martinho da Costa |
Contributors | Universidade Federal de Santa Catarina, Solecki, Andrzej |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | vi, 53f.| tabs |
Source | reponame:Repositório Institucional da UFSC, instname:Universidade Federal de Santa Catarina, instacron:UFSC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds