Return to search

Evolution du bilan de masse de surface Antarctique par régionalisation physique et contribution aux variations du niveau des mers / Evolution of Antarctic surface mass balance by high-resolution downscaling and impact on sea-level changes

Le Bilan de Masse de Surface (BMS, c'est-à-dire les précipitations de neige auxquelles est retranchée l'ablation par sublimation, ruissellement ou érosion) de la calotte polaire Antarctique représente une contribution majeure et encore mal connue à l'évolution actuelle du niveau des mers. Le stockage d'eau douce par accumulation de neige sur la calotte posée est supposé s'intensifier au cours du 21eme siècle, modérant l'élévation du niveau des mers et modifiant la dynamique glaciaire. Les trois-quarts du bilan de masse de surface Antarctique sont concentrés au dessous de 2000 m d'altitude alors que cette zone ne représente que 40% de la surface de la calotte posée. Les précipitations orographiques sont une contribution majeure à l'accumulation dans cette région, il est donc crucial d'estimer précisément ce terme. La modélisation de ce processus est fortement dépendant de la résolution des modèles, car les pentes de la calotte influencent l'intensité des précipitations orographiques. La sublimation et la fonte de la neige sont eux aussi fortement dépendant de l'élévation. Bien qu'ils contribuent actuellement peu au bilan de masse de surface de l'Antarctique, ils sont susceptibles de subir des changements importants au cours des prochains siècles. Les modèles atmosphériques de climat, globaux ou régionaux, ne peuvent pas atteindre une résolution allant au delà de 40 km sur l'Antarctique pour des simulations à l'échelle du siècle du fait de coûts de calcul importants. A ces résolutions, la topographie des zones côtières Antarctique n'est pas correctement représentée. C'est pourquoi nous avons développé le modèle de régionalisation SMHiL (Surface Mass balance High-resolution downscaLing) qui permet d'estimer les composantes du bilan de masse de surface Antarctique à haute résolution (~15 km) à partir de champs atmosphériques de plus grande échelle. Nous calculons l'effet de la topographie fine sur les précipitations orographiques et sur les processus de couche limite menant à la sublimation, la fonte et le regel. SMHiL est validé pour la période actuelle à partir d'un jeu de données inédit constitué de plus de 2700 observations de qualité contrôlée. Cependant, les observations représentatives du BMS de la zone côtière Antarctique y sont sous-représentées. Dans ce contexte, nous montrons que la ligne de balise mise en place par l'observatoire GLACIOCLIM-SAMBA en bordure de calotte constitue une référence pour estimer les performances des modèles. Enfin, nous utilisons SMHiL à l'aval du modèle de circulation générale LMDZ4 pour évaluer les variations de BMS au cours du 21eme et du 22eme siècles. Le BMS à haute résolution est significativement différent de celui de LMDZ4 et est plus proche du BMS observé pour la période actuelle. Les résultats suggèrent que les précédentes estimations d'augmentation du BMS au cours du prochain siècle étaient sous-estimées de près de 30% par LMDZ4. Les changements de BMS à faible élévation résulteront d'une compétition entre l'augmentation d'accumulation de neige et de ruissellement. SMHiL est un outil destiné à être appliqué à l'aval d'autres modèles de climat, globaux ou régionaux, pour une meilleure estimation des variations futures du niveau des mers. / The Antarctic Surface Mass Balance (SMB, i.e. the snow accumulation from which we subtract ablation by sublimation, run-off or erosion) is a major yet badly known contribution to changes in the present-day sea level. Water storage by snow accumulation on the Antarctic continent is expected to increase in the 21st century, which would moderate the rise in sea level and impact the ice dynamic response of the ice sheet. Three-quarters of the Antarctic SMB are concentrated below 2000 m above sea level whereas this area represents only 40% of the grounded ice sheet area. Orographic precipitation is a major contributor to snow accumulation in this region, which is why a better estimation of this term is important. The representation of this process by models depends to a great extent on the resolution of the model, since precipitation amounts depend on the ice sheet slopes. Sublimation and snowmelt also depend on elevation, and although they are presently minor contributors to the Antarctic SMB, their role is expected to become more important in the coming centuries. Global and regional atmospheric climate models are unable to achieve a 40-km resolution over Antarctica at a century time scale, due to their computing cost. At this resolution, the Antarctic coastal area is still badly represented. This is why we developed the downscaling model SMHiL (Surface mass balance high-resolution downscaling) to estimate the Antarctic SMB components at a high resolution (~15 km) from large-scale atmospheric forcings. We computed the impact of the high-resolution topography on orographic precipitation amounts and the boundary layer processes that lead to sublimation, melting and refreezing. SMHiL has been validated for the present period with a dataset composed of more than 2700 quality-controlled observations. However, very few of these observations are representative of the Antarctic coastal area. In this context, we show that the GLACIOCLIM-SAMBA stake lines located on the ice sheet coast-to-plateau area is an appropriate reference to evaluate model performance. Finally, we used SMHiL to estimate the SMB changes during the 21st and 22nd centuries, by downscaling the atmospheric global climate model LMDZ4. The high-resolution SMB is significantly different from the SMB given by LMDZ4 and is closer to the observed one for the present period. Our results suggest that previous studies using the LMDZ4 models underestimated the future increase in SMB in Antarctica by about 30%. Future changes in the Antarctic SMB at low elevations will result from the conflict between higher snow accumulation and runoff. The downscaling model is a powerful tool that can be applied to climate models for a better assessment of a future rise in sea level.

Identiferoai:union.ndltd.org:theses.fr/2012GRENU023
Date15 June 2012
CreatorsAgosta, Cécile
ContributorsGrenoble, Genthon, Christophe, Favier, Vincent
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds