• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 4
  • 1
  • Tagged with
  • 27
  • 27
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A modelling approach to carbon, water and energy feedbacks and interactions across the land-atmosphere interface

Hill, Timothy C. January 2007 (has links)
The climate is changing and the rate of this change is expected to increase. In the 20th century global surface temperatures rose by 0.6 (±0.2) K. Based on current model predictions, and economic forecasts, global temperature increases of 1.4 to 5.8 K are expected over the period 1990 – 2100. One of the main drivers for this temperature increase is the build up of CO2 in the atmosphere which has been increasing since pre-industrial times. Pre-industrial concentrations of CO2 were bounded between 180 ppm and 300 ppm, however the current concentrations of 380 ppm are far in excess of these bounds. Further more, forecasts indicates that a further doubling in the next century is a distinct possibility. However making predictions about the future climate is difficult. Predicting the trajectory that the climate will take uses assumptions of economic growth, technological advances and ecological and physical processes. If we are to make informed decisions regarding the future of the planet, we have to account not only for future anthropogenic emissions and land use, but we also have to identify the response of the Earth system. By its very nature the Earth is immensely complex; processes, interactions and feedbacks exist which operate on vastly different spatial and temporal scales. Each of these processes has an associated level of uncertainty. This uncertainty propagates through models and the processes and feedbacks they simulate. One of our jobs as environmental scientists is to quantify and then reduce these uncertainties. Consequently it is critical to quantify the interactions of the land-surface and the atmosphere. The role of the land-surface is critical to the response of the Earth’s climate. All general circulation models and regional scale models need representations of the land-surface. A lot of the work concerning the land-surface aims to determine the land-surface partitioning of energy, the evapotranspiration of water and if the land-surface is a sink or a source of CO2. To do achieve this we need to understand (1) the underlying processes governing the response of the land-surface, (2) the response of these processes to perturbations from climate change and humans, (3) the temporal and spatial heterogeneity in these processes, and (4) the feedbacks that land-surface processes have with the climate. In this thesis I use a coupled atmosphere-biosphere model to show current understanding of the carbon, water and energy dynamics of the biosphere and the atmosphere to be consistent with both PBL and stand-based measurements. I then use the CAB model to investigate the strength of different feedbacks between the atmosphere and biosphere. Finally the model is then used in a Monte Carlo Bayesian inversion scheme to invert atmospheric measurements to infer information about surface parameters.
2

Parameterisation of Orographic Cloud

Dean, Samuel Martin January 2002 (has links)
Orographic cloud is investigated in a global context using both observations and a global climate model. Climatological cloud amounts from the International Satellite Cloud Climatology Project (ISCCP) are used in conjunction with wind reanalyses to study orographic cirrus amounts over the globe. Significant increases in cirrus are seen over many land areas, with respect to any surrounding oceans. To aid in interpretation of this result special attention is given to the New Zealand region as a case study for orographic cloud formation. Cirrus is found be more prevalent over New Zealand when compared to the adjacent ocean to the west. ISCCP cloud amounts are also compared with a ten year simulation of the UK Meteorological Office's Unified Model. The model is found to be considerably lacking in both cirrus and total high cloud over major mountain ranges. The model is also found to lack trailing cirrus clouds in the lee of orography despite the inclusion of a prognostic ice variable capable of being advected by the model winds. To improve the simulations of orographic cirrus and high cloud in the Unified Model a linear hydrostatic gravity wave scheme that predicts both the amplitude and phase of subgrid orographic gravity waves is introduced. The temperature perturbation caused by these waves in the troposphere is used to modify the amount of both liquid and ice cloud. One important feature of the parameterisation is that the launch amplitude of the gravity waves is predicted by a directional variance function which accounts for anisotropy in the subgrid orography. The parameterisation is explored in the context of an off-line testbed before implementation in the Unified Model. In a ten year simulation the parameterisation is found to increase the high cloud amounts over a number of the world's major mountain ranges. However, this extra cloud is optically thick and unable to remove the deficiency in optically thin cirrus amounts. Suggestions, as part of future work, for improvements to the model and orographic cloud parameterisation are also made.
3

Developing a climate-space modelling approach using a GIS to estimate the impacts of climate change on nature reserves in Great Britain

Dockerty, Trudie Lynne January 1998 (has links)
No description available.
4

Parameterisation of Orographic Cloud

Dean, Samuel Martin January 2002 (has links)
Orographic cloud is investigated in a global context using both observations and a global climate model. Climatological cloud amounts from the International Satellite Cloud Climatology Project (ISCCP) are used in conjunction with wind reanalyses to study orographic cirrus amounts over the globe. Significant increases in cirrus are seen over many land areas, with respect to any surrounding oceans. To aid in interpretation of this result special attention is given to the New Zealand region as a case study for orographic cloud formation. Cirrus is found be more prevalent over New Zealand when compared to the adjacent ocean to the west. ISCCP cloud amounts are also compared with a ten year simulation of the UK Meteorological Office's Unified Model. The model is found to be considerably lacking in both cirrus and total high cloud over major mountain ranges. The model is also found to lack trailing cirrus clouds in the lee of orography despite the inclusion of a prognostic ice variable capable of being advected by the model winds. To improve the simulations of orographic cirrus and high cloud in the Unified Model a linear hydrostatic gravity wave scheme that predicts both the amplitude and phase of subgrid orographic gravity waves is introduced. The temperature perturbation caused by these waves in the troposphere is used to modify the amount of both liquid and ice cloud. One important feature of the parameterisation is that the launch amplitude of the gravity waves is predicted by a directional variance function which accounts for anisotropy in the subgrid orography. The parameterisation is explored in the context of an off-line testbed before implementation in the Unified Model. In a ten year simulation the parameterisation is found to increase the high cloud amounts over a number of the world's major mountain ranges. However, this extra cloud is optically thick and unable to remove the deficiency in optically thin cirrus amounts. Suggestions, as part of future work, for improvements to the model and orographic cloud parameterisation are also made.
5

Modelling the variability of the earth's radiation budget

Allan, Richard Philip January 1998 (has links)
No description available.
6

Model WRF a jeho využití v regionálním klimatickém modelování ve vysokém rozlišení / Model WRF and its application for regional climate modelling in high resolution

Karlický, Jan January 2012 (has links)
This work is dealing with regional climate models. Firstly, their principle and use of them is described, including advantages and disadvantages of this approach. Further, the application of WRF numerical weather prediction model in climate mode is described and differences in use of CLWRF modification and its advantages for getting results are discussed. Possibilities of this implementation and testing runs for finding appropriate settings are presented. Finally, the results of one ten-year and four five-year simulations of model with different settings are compared with observed values. Some chapters are dedicated to possibilities of processing and graphics outputs of model results and discussion.
7

Assessing the influence of canopy snow parameterizations on snow albedo feedback in boreal forest regions

Thackeray, Chad William 06 September 2014 (has links)
Variation in snow albedo feedback (SAF) among CMIP5 climate models has been shown to explain much of the variation in projected 21st Century warming over Northern Hemisphere land. Prior studies using observations and models have demonstrated both considerable spread in the albedo, and a weak bias in the simulated strength of SAF, over snow-covered boreal forests. Boreal evergreen needleleaf forests are capable of intercepting snowfall throughout the snow season, which has a significant impact on seasonal albedo. Two satellite data products and tower-based observations of albedo are compared with simulations from multiple configurations of the Community Climate System Model (CCSM4) to investigate the causes of weak simulated SAF over the boreal forest. The largest bias occurs in April-May when simulated SAF is one-half the strength of SAF in observations. This is traced to two canopy snow parameterizations in the land model. First, there is no mechanism for the dynamic removal of snow from the canopy when temperatures are below freezing, which results in albedo values in midwinter that are biased high. Second, when temperatures do rise above freezing, all snow on the canopy is melted instantaneously, which results in an unrealistically early transition from a snow-covered to a snow-free canopy. These processes combine to produce large differences between simulated and observed monthly albedo, and are the sources of the weak bias in SAF. This analysis highlights the importance of canopy snow parameterizations for simulating the hemispheric scale climate response to surface albedo perturbations. A number of new experiments are described as recommendations for future work.
8

Modelling Climate - Surface Hydrology Interactions in Data Sparse Areas

Evans, Jason Peter, jason.evans@yale.edu January 2000 (has links)
The interaction between climate and land-surface hydrology is extremely important in relation to long term water resource planning. This is especially so in the presence of global warming and massive land use change, issues which seem likely to have a disproportionate impact on developing countries. This thesis develops tools aimed at the study and prediction of climate effects on land-surface hydrology (in particular streamflow), which require a minimum amount of site specific data. This minimum data requirement allows studies to be performed in areas that are data sparse, such as the developing world. ¶ A simple lumped dynamics-encapsulating conceptual rainfall-runoff model, which explicitly calculates the evaporative feedback to the atmosphere, was developed. It uses the linear streamflow routing module of the rainfall-runoff model IHACRES, with a new non-linear loss module based on the Catchment Moisture Deficit accounting scheme, and is referred to as CMD-IHACRES. In this model, evaporation can be calculated using a number of techniques depending on the data available, as a minimum, one to two years of precipitation, temperature and streamflow data are required. The model was tested on catchments covering a large range of hydroclimatologies and shown to estimate streamflow well. When tested against evaporation data the simplest technique was found to capture the medium to long term average well but had difficulty reproducing the short-term variations. ¶ A comparison of the performance of three limited area climate models (MM5/BATS, MM5/SHEELS and RegCM2) was conducted in order to quantify their ability to reproduce near surface variables. Components of the energy and water balance over the land surface display considerable variation among the models, with no model performing consistently better than the other two. However, several conclusions can be made. The MM5 longwave radiation scheme performed worse than the scheme implemented in RegCM2. Estimates of runoff displayed the largest variations and differed from observations by as much as 100%. The climate models exhibited greater variance than the observations for almost all the energy and water related fluxes investigated. ¶ An investigation into improving these streamflow predictions by utilizing CMD-IHACRES was conducted. Using CMD-IHACRES in an 'offline' mode greatly improved the streamflow estimates while the simplest evaporation technique reproduced the evaporative time series to an accuracy comparable to that obtained from the limited area models alone. The ability to conduct a climate change impact study using CMD-IHACRES and a stochastic weather generator is also demonstrated. These results warrant further investigation into incorporating the rainfall-runoff model CMD-IHACRES in a fully coupled 'online' approach.
9

Interannual and Decadal Variability in Tropical Pacific Sea Level

Peyser, Cheryl, Yin, Jianjun 05 June 2017 (has links)
A notable feature in the first 20-year satellite altimetry records is an anomalously fast sea level rise (SLR) in the western Pacific impacting island nations in this region. This observed trend is due to a combination of internal variability and external forcing. The dominant mode of dynamic sea level (DSL) variability in the tropical Pacific presents as an east-west see-saw pattern. To assess model skill in simulating this variability mode, we compare 38 Coupled Model Intercomparison Project Phase 5 (CMIP5) models with 23-year satellite data, 55-year reanalysis products, and 60-year sea level reconstruction. We find that models underestimate variance in the Pacific sea level see-saw, especially at decadal, and longer, time scales. The interannual underestimation is likely due to a relatively low variability in the tropical zonal wind stress. Decadal sea level variability may be influenced by additional factors, such as wind stress at higher latitudes, subtropical gyre position and strength, and eddy heat transport. The interannual variability of the Nino 3.4 index is better represented in CMIP5 models despite low tropical Pacific wind stress variability. However, as with sea level, variability in the Nino 3.4 index is underestimated on decadal time scales. Our results show that DSL should be considered, in addition to sea surface temperature (SST), when evaluating model performance in capturing Pacific variability, as it is directly related to heat content in the ocean column.
10

Modelling the early to mid-Holocene Arctic climate

Berger, Marit January 2013 (has links)
In the recent past it has become evident that the Earth's climate is changing, and that human activity play a significant role in these changes. One of the regions where the ongoing climate change has been most evident is in the Arctic: the surface temperature has increased twice as much in this region as compared to the global average, in addition, a significant decline in the Arctic sea-ice extent has been observed in the past decades. Climate model studies of past climates are important tools to understand the ongoing climate change and how the Earth's climate may respond to changes in the forcing. This thesis includes studies of the Arctic climate in simulations of the early and mid-Holocene, 9 000 and 6 000 years before present. Changes in the Earth's orbital parameters resulted in increased summer insolation as compared to present day, especially at high northern latitudes. Geological data imply that the surface temperatures in the early to mid Holocene were similar to those projected for the near future. In addition, the geological data implies that the Arctic sea ice cover was significantly reduced in this period. This makes the early to mid-Holocene an interesting period to study with respect to the changes observed in the region at present. Several model studies of the mid-Holocene have been performed through the Paleoclimate Modeling Intercomparison Project (PMIP1 to PMIP3). The simulations have been performed with climate models of varying complexity, from atmosphere-only models in the first phase to fully coupled models with the same resolution as used for future climate simulations in the third phase. The first part of this thesis investigates the simulated sea ice in the pre-industrial and mid-Holocene simulations included in the PMIP2 and PMIP3 ensemble. As the complexity of the models increases, the models simulate smaller extents and thinner sea ice in the Arctic; the sea-ice extent suggested by the proxy data for the mid-Holocene is however not reproduced by the majority of the models. One possible explanation for the discrepancy between the simulated and reconstructed Arctic sea ice extent is missing or inadequate representations of important processes. The representation of atmospheric aerosol direct and indirect effects in past climates is a candidate process. Previous studies of deeper time periods have concluded that the representation of the direct and indirect effects of the atmospheric aerosols can influence the simulated climates, and reduce the equator to pole temperature gradient in past warm climates, in better agreement with reconstructions. The second part of the thesis investigates the influence of aerosol on the early Holocene climate. The indirect effect of reduced aerosol concentrations as compared to the present day is found to cause an amplification of the warming, especially in the Arctic region. A better agreement with reconstructed Arctic sea ice extent is thus achieved. / Under senare tid har det blivit uppenbart att jordens klimat håller på att förändras, och att mänsklig aktivitet spelar en viktig roll för dessa ändringar. Ett av de områden där den pägäende klimatfärändringen har varit tydligast är Arktis: temperaturen vid ytan har ökat dubbelt så mycket här jämfört med det globala genomsnittet. Dessutom har man observerat en betydande nedgång i havsisens utbredning i Arktis de senaste decennierna. Simuleringar gjorda med klimatmodeller av forntida klimat är viktiga verktyg för att förstå de pågående klimatförändringarna och hur jordens klimat påverkas av ändringar i klimatsystemets drivningar. Denna avhandling består av studier av det arktiska klimatet i modellsimuleringar av tidig och mid-holocen, ca. 9 000 och 6 000 år före nutid. Förändringar i jordens bana kring solen resulterade i en ökad sommar-solinstrålning jämfört med nutid, särskilt vid höga nordliga breddgrader. Geologiska data antyder att jordens temperatur vid ytan under denna period kan jämföras med dem vi förväntar för den närmaste framtiden. Vidare indikerar geologiska data att havsisen i Arktisk var kraftigt reducerad under denna period. Detta gör tidig till mid-holocen till en intressant period att studera, med avseende på de förändringar som för närvarande har observerats i området. Flera modellstudier av mitt-holocen har utförts i de olika faserna av Paleoclimate Modeling Intercomparison Project (PMIP1 till PMIP3). Simuleringarna har utförts med klimatmodeller av varierande komplexitet, från atmosfärsmodeller i den första fasen, till fullt kopplade modeller med hög rumslig upplösning i den tredje fasen. I den första delen av denna avhandling undersöks den simulerade havsisen i de förindustriella och mid-holocen simuleringar som ingår i PMIP2 och PMIP3 ensemblerna. Modellerna simulerar mindre utbredning och tunnare havsis i Arktis i den senare PMIP ensemblen, men fortfarande återskapar inte modellerna generelt den havsisutbredning som de geologiska data indikerar. En möjlig förklaring till skillnaderna mellan den simulerade och rekonstruerade havsisutsträckningen kan vara att viktiga processer i klimatsystemet saknas eller inte är tillräckligt väl beskrivna i modellerna. Beskrivningen av atmosfäriska aerosoler och dess effekter på klimatet är en möjlig kandidatprocess. Från studier av forntida varma tidsperioder har man dragit slutsatsen att beskrivningen av aerosoleffekterna påverkar det simulerade klimatet. Bland annat kan man minska temperaturgradienten mellan ekvator och polerna i tidigare varma klimat, vilket bättre överensstämmer med temperaturrekonstruktioner. Den andra delen av avhandlingen undersöker påverkan av aerosoler på klimatet under tidig holocen. Den indirekta effekten som följer av lägre aerosolkoncentrationer i tidig holocen jämfört med i dag, visar sig orsaka en förstärkning av uppvärmningen, särskilt i det arktiska områet, vilket stämmer bättre med havsisrekonstruktioner från denna period. / <p>QC 20130910</p>

Page generated in 0.1198 seconds