Return to search

Aerosol-Cloud-Radiation Interactions in Regimes of Liquid Water Clouds

Despite large efforts and decades of research, the scientific understanding of how aerosols impact climate by modulating microphysical cloud properties is still low and associated radiative forcing estimates (RFaci ) vary with a wide spread. But since anthropogenically forced aerosol-cloud interactions (ACI) are considered to oppose parts of the global warming, it is crucial to know their contribution to the total radiative forcing in order to improve climate predictions.
To obtain a better understanding and quantification of ACI and the associated radiative effect it as been suggested to use concurrent measurements and observationally constrained model simulations. In this dissertation a joint satellite-reanalysis approach is introduced, bridging the gap between climate models and satellite observations in a bottom-up approach. This methodology involves an observationally constrained aerosol model, refined and concurrent multi-component satellite retrievals, a state-of-the-art aerosol activation parameteriza-
tion as well as radiative transfer model. This methodology is shown here to be useful for a quantitative as well as qualitative analysis of ACI and for estimating RFaci . As a result, a 10-year long climatology of cloud condensation nuclei (CCN) (particles from which cloud droplets form) is produced and evaluated. It is the first of its kind providing 3-D CCN concentrations of global coverage for various supersaturations and aerosol species and offering the opportunity to be used for evaluation in models and ACI studies. Further, the distribution and variability of the resulting cloud droplet numbers and their susceptibility to changes in aerosols is explored and compared to previous estimates. In this context, an analysis by cloud regime has been proven useful. Last but not least, the computation and analysis of the present-day regime-based RFaci represents
the final conclusion of the bottom-up methodology. Overall, this thesis provides a comprehensive assessment of interactions and uncertainties related to aerosols, clouds and radiation in regimes of liquid water clouds and helps to improve
the level of scientific understanding.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:31931
Date17 October 2018
CreatorsBlock, Karoline
ContributorsUniversität Leipzig
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds