Application-specific optimization of embedded systems becomes inevitable to satisfy the
market demand for designers to meet tighter constraints on cost, performance and power.
On the other hand, the flexibility of a system is also important to accommodate the short
time-to-market requirements for embedded systems. To compromise these incompatible
demands, coarse-grained reconfigurable architecture (CGRA) has emerged as a suitable
solution. A typical CGRA requires many processing elements (PEs) and a configuration
cache for reconfiguration of its PE array. However, such a structure consumes significant
area and power. Therefore, designing cost-effective CGRA has been a serious concern
for reliability of CGRA-based embedded systems.
As an effort to provide such cost-effective design, the first half of this work
focuses on reducing power in the configuration cache. For power saving in the configuration
cache, a low power reconfiguration technique is presented based on reusable context
pipelining achieved by merging the concept of context reuse into context pipelining.
In addition, we propose dynamic context compression capable of supporting only required
bits of the context words set to enable and the redundant bits set to disable. Finally, we provide dynamic context management capable of reducing reduce power consumption
in configuration cache by controlling a read/write operation of the redundant
context words
In the second part of this dissertation, we focus on designing a cost-effective PE array
to reduce area and power. For area and power saving in a PE array, we devise a costeffective
array fabric addresses novel rearrangement of processing elements and their
interconnection designs to reduce area and power consumption. In addition, hierarchical
reconfigurable computing arrays are proposed consisting of two reconfigurable computing
blocks with two types of communication structure together. The two computing
blocks have shared critical resources and such a sharing structure provides efficient
communication interface between them with reducing overall area.
Based on the proposed design approaches, a CGRA combining the multiple design
schemes is shown to verify the synergy effect of the integrated approach. Experimental
results show that the integrated approach reduces area by 23.07% and power by up to
72% when compared with the conventional CGRA.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2009-05-649 |
Date | 2009 May 1900 |
Creators | Kim, Yoonjin |
Contributors | Mahapatra, Rabi N. |
Source Sets | Texas A and M University |
Language | English |
Detected Language | English |
Type | Book, Thesis, Electronic Dissertation, text |
Format | application/pdf |
Page generated in 0.0023 seconds