Return to search

Propriétés ergodiques du feuilletage horosphérique d'une variété à courbure négative

Cette thèse est consacrée à l'étude des propriétés ergodiques du feuilletage horosphérique d'une variété géométriquement finie à courbure négative $M$. Un de nos principaux résultats est la classification des mesures transverses quasi-invariantes dont la dérivée de Radon-Nikodym est un cocycle höldérien fixé, associé à une mesure de Gibbs. À un tel cocycle, nous associons certaines moyennes sur les horosphères et montrons qu'elles s'équidistribuent vers la mesure de Gibbs correspondante lorsque $M$ est compacte ou convexe-cocompacte. Lorsqu'elle n'est ni compacte ni convexe-cocompacte, nous limitons l'étude aux moyennes associées à la mesure d'entropie maximale. Nous montrons qu'elles forment une suite tendue, ce qui, dans le cas des surfaces, nous permet d'obtenir leur équidistribution vers cette mesure d'entropie maximale. En corollaire, nous obtenons l'équidistribution des orbites du flot horocyclique d'une surface hyperbolique géométriquement finie mais de volume infini.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00163420
Date26 November 2003
CreatorsSchapira, Barbara
PublisherUniversité d'Orléans
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds