Return to search

Predicting Coherent Turbulent Structures with Artificial Neural Networks / Förutspå Coherent Turbulent Structuresmed Artificiella Neurala Nätverk

Turbulent flow is widespread in many applications, such as airplanes or cars. Such flow is characterized by being highly chaotic and impossible to predict far into the future. In turbulent flow, there exist regions that have different properties compared to neighboring flow; these regions are called coherent turbulent structures. These structures are connected to Reynolds stress which is essential for modeling turbulent flow. Machine learning techniques have recently had very impressive results for modeling turbulence. In this thesis, we investigate their capabilities of modeling coherent structures. We use data from a highly accurate simulation to create two different artifical neural networks. These networks are tuned by hand, trained, and then we evaluate their performance. We investigate the loss of the networks and the statistical properties of their predictions and compare them to the simulated data. / Turbulent flöde är utbrett i många applikationer, såsom flygplan eller bilar. Sådant flöde kännetecknas av att det är mycket kaotiskt och omöjligt att förutse långt in i framtiden. I turbulent flöde finns det regioner som har olika egenskaper jämfört med närliggande flöde; dessa regioner kallas coherent turbulent structures. Dessa strukturer är kopplade till Reynolds stress, som är avgörande för att modellera turbulent flöde. Maskininlärningstekniker har nyligen haft mycket imponerande resultat för modellering av turbulens. I denna avhandling undersöker vi deras förmåga att modelelera coherent turbulent structures. Vi använder data från en mycket exakt simulering för att skapa två olika artificiella neurala nätverk. Dessa nätverks hyperparameterar väljs manuellt, tränas och sedan utvärderar vi deras resultat. Vi undersöker förlusten av nätverken och de statistiska egenskaperna hos deras förutsägelser och jämför dem med simulerade data.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-335899
Date January 2021
CreatorsSchmekel, Daniel
PublisherKTH, Matematik (Avd.)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2021:405

Page generated in 0.0107 seconds