The main theme covered in this thesis is experimentalstudies of quantum dynamics and coherent control in homonuclearalkali diatomic molecules by ultrafast laser spectroscopy iththe implementation of pump-probe techniques. A series of experiments have been performed on the Rb2molecules in a molecular beam as well as in a thermal oven. Thereal-time molecular quantum dynamics of the predissociatingelectronically excited D(3)1Πu state of Rb2, which couples to/intersects several otherneighbouring states, is investigated using wavepackets. Thepredissociation of the D state, explored by this wavepacketmethod, arises from two independent states, the (4)3Σu+and (1)3∆u, for which the second corresponds to a much fasterdecay channel above a sharp energy threshold around 430 nm. Thelifetime of the D state above the energy threshold is obtained,τ ≈ 5 ps, by measuring the decay time of thewavepacket in a thermal oven. Further experimentalinvestigation performed in a molecular beam together withquantum calculations of wavepacket dynamics on the D state haveexplored new probe channels of wavepacket evolution: theD′(3)1Σu+ channel, which exhibits vibrational motionin a shelf state and the (4)3Σu+ channel, where direct build-up of thewavefunction is observed due to its spin-orbit oupling to the Dstate. The real-time quantum dynamics of wavepackets confined totwo bound states, A1Σu+(0u+) and b3Πu(0u+), have been studied by experiment andcalculations. It is shown that these two states are fullycoupled by spin-orbit interaction, characterised by itsintermediate strength. The intermediate character of thedynamics is established by complicated wavepacket oscillationatterns and a value of 75 cm-1is estimated for the coupling strength at thestate crossing. The experiments on the Li2molecule are performed by coherent control ofrovibrational molecular wavepackets. First, the Deutsch-Jozsaalgorithm is experimentally demonstrated for three-qubitfunctions using a pure coherent superposition of Li2rovibrational eigenstates. The functionscharacter, either constant or balanced, is evaluated by firstimprinting the function, using a phase-tailored femtosecond(fs) pulse, on a coherent superposition of the molecularstates, and then projecting the superposition onto an ionicfinal state using a second fs pulse at a specific delay time.Furthermore, an amplitude-tailored fs pulse is used to exciteselected rovibrational eigenstates and collision induceddephasing of the wavepacket signal, due to Li2-Ar collisions, is studied experimentally. Theintensities of quantum beats decaying with the delay time aremeasured under various pressures and the collisional crosssections are calculated for each well-defined rovibrationalquantum beat, which set the upper limitsfor ure dephasingcross sections. <b>Keywords:</b>Ultrafast laser spectroscopy, pump-probetechnique, predissociation, wavepacket, pin-orbit interaction,coherent control, (pure) dephasing
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-3420 |
Date | January 2002 |
Creators | Zhang, Bo |
Publisher | KTH, Fysik, Stockholm : Fysik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Trita-FYS, 0280-316X ; 2002:30 |
Page generated in 0.0201 seconds