• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 12
  • 11
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strong Optical Field Ionization of Solids

Ben Taher, Azza January 2018 (has links)
Population transfer from the valence to conduction band in the presence of an intense laser field is explored theoretically in semiconductors and dielectrics. Experiments on intense laser driven dielectrics have revealed population transfer to the conduction band that differs from that seen in semiconductors. Our research explores two aspects of ionization in solids. (i) Current ionization theories neglect coupling between valence and conduction band and therewith the dynamic Stark shift. Our single-particle analysis identifies this as a potential reason for the different ionization behaviour. The dynamic Stark shift increases the bandgap with increasing laser intensities thus suppressing ionization to an extent where virtual population oscillation become dominant. The dynamic Stark shift plays a role dominantly in dielectrics which due to the large bandgap can be exposed to significantly higher laser intensities. (ii) In the presence of laser dressed virtual population of the conduction band, elastic collisions potentially transmute virtual into real population resulting in ionization. This process is explored in context of relaxation time approximation.
2

Interference and interaction of charge carriers in graphene

Kozikov, Aleksey January 2011 (has links)
Electron transport at low temperatures in two-dimensional electron systems is governed by two quantum corrections to the conductivity: weak localisation and electron-electron interaction in the presence of disorder. We present the first experimental observation of these quantum corrections in graphene, a single layer of carbon atoms, over a temperature range 0.02 - 200 K. Due to the peculiar properties of graphene, weak localisation is sensitive not only to inelastic, phase-breaking scattering events, but also to elastic scattering mechanisms. The latter includes scattering within and between the two valleys (intra- and inter-valley scattering, respectively). These specifics make it possible, for example, to observe a transition from weak localisation to antilocalisation. Our work reveals a number of surprising features. First of all the transition occurs not only as the carrier density is varied, but also as the temperature is tuned. The latter has never been observed in any other system studied before. Second, due to weak electron-phonon interaction in graphene, quantum interference of electrons survives at very high temperatures, up to 200 K. For comparison, in other two-dimensional (2D) systems the weak localisation effect is only seen below 50 K. The electron-electron interaction correction is also affected by elastic scattering. In a two-valley system, there are two temperature regimes of the interaction correction that depend on the strength of inter-valley scattering. In both regimes the correction has its own expression. We show that because of the intra-valley scattering, a third regime is possible in graphene, where the expression for the correction takes a new form. The study of weak localisation demonstrates that the third regime is realised in our experiments. We use the new expression to determine the Fermiliquid parameter, which turns out to be smaller than in other 2D systems due to the chirality of charge carriers. At very low temperatures (below 100 mK) we observe a saturation of the electron dephasing length. We study different mechanisms that could be responsible for the saturation and discuss in detail one of them – spin-orbit interaction. We determine the spin coherence length from studies of weak localisation and the temperature dependence of the conductivity and found good agreement between the two types of experiments. We also show the way to tune the spin coherence length by an order of magnitude by controlling the level of disorder. However, experiment shows contradictions with theory both in values of the spin coherence length and the type of spin relaxation. We speculate about another spin-related mechanism, spin flip by vacancies, which to some extent could also explain our observations. We also present electron transport in graphene irradiated by gallium ions. Depending on the dosage of irradiation the behavior of electrons changes. Namely, electron localisation can be tuned from weak to strong. At low dosages we observe the weak localisation regime, where the mentioned quantum corrections to the conductivity dominate at low temperatures. We found the electron scattering between the valleys to be enhanced, attributing it to atomically sharp defects (kicked out carbon atoms) produced by ion irradiation. We also speculate that gallium ions can be embedded in the substrate or trapped between silica and graphene. We draw this conclusion after investigation of the spin-orbit interaction in irradiated samples. At high dosages electrons become strongly localised and their transport occurs via variable-range hopping.
3

Experimental Observation of Geometric Phases in Narrow-Gap Semiconductor Heterostructures

Lillianfeld, Robert Brian 03 May 2011 (has links)
We have studied the electron quantum phase by fabricating low dimensional (d ≤ 2) mesoscopic interferometers in high-quality narrow-gap semiconductor (NGS) heterostructures. The low effective-mass electrons in NGS heterostructures enable observation of delicate quantum phases; and the strong spin-orbit interaction (SOI) in the systems gives us means by which we can manipulate the quantum-mechanical spin of these electrons through the orbital properties of the electrons. This enables the observation of spin-dependent phenomena otherwise inaccessible in non-magnetic systems. We have performed low temperature (0.4 K ≤ T ≤ 8 K), low noise (â V ~ 1μV ) transport measurements, and observed evidence of Aharonov-Bohm (AB) and Alâ tshuler-Aronov-Spivak (AAS) quantum oscillations in meso- scopic devices that we fabricated on these NGSs. Our measurements are unique in that we observe both AB and AAS in comparable magnitude in ballistic networks with strong SOI. We show that, with appropriate considerations, diffusive formalisms can be used to describe ballistic transport through rings, even in the presence of SOI. This work also contains an introduction to the physics of geometric phases in mesoscopic systems, and the experimental and analytic processes through which these phases are probed. A discussion of the results of our measurements presents the case that quantum interferometric measurements of geometric phases can be understood quite thoroughly, and that these measurements may have deeper utility in discovery than has yet been recognized. / Ph. D.
4

Experimental study of 2D hole systems : coherent transport in quantum dots and magnetothermopower

Faniel, Sébastien 06 December 2007 (has links)
Two-dimensional (2D) carrier systems built from semiconductor heterostructures have been at the center of a wide variety of experimental and theoretical research over the past decades. The quality improvement of GaAs/AlGaAs systems has allowed the observation of several peculiar ground states stabilized by the subtle interplay between carrier-carrier interaction, disorder and magnetic field. More recently, 2D systems in semiconductor heterostructures have also been used as a prime substrate for further confinement of the carriers to mesoscopic systems of major interest for the emerging fields of quantum computing and spintronics. This thesis addresses both magnetotransport measurements in hole open quantum dots (QDs) and thermopower studies of 2D holes in (311)A GaAs heterostructures. In the first part of this thesis, we describe the fabrication process for hole GaAs open QDs and investigate their magnetotransport properties at very low temperature T. Below 500 mK, the magnetoconductance of the open QDs exhibits clear signatures of coherent transport, namely magnetoconductance fluctuations and weak anti-localization. From these effects, we extract a T dependence for the dephasing time, together with an upper limit for the spin-orbit scattering time using the random matrix theory. Both the dephasing time and the spin-orbit scattering time are found to be much smaller than for electrons in similar systems. In the second part of this work, we report low-T thermopower measurements in the parallel magnetic field-induced metal-insulator transition (MIT) of 2D GaAs hole heterojunctions with different interface-dependent mobilities. When the magnetic field is increased, the diffusion thermopower decreases across the MIT. The reduction of the diffusion thermopower is more pronounced for the lower mobility sample where it reverses its sign. This behaviour indicates that the system does not undergo any ground state modification through the MIT but rather that the parallel magnetic field induces a dramatic change of the dominant hole scattering mechanisms. Finally, the last part of this thesis is devoted to the thermopower study of the insulating phase (IP) observed in 2D GaAs bilayer hole systems around the total Landau level filling factor n = 1. Our measurements show that the diffusion thermopower diverges with decreasing T in the IP. This divergence of the diffusion thermopower at low T indicates the opening of an energy gap in the system's ground state and suggests the formation of a pinned bilayer hole Wigner crystal around n = 1.
5

Experimental Studies of Quantum Dynamics and Coherent Control in Homonuclear Alkali Diatomic Molecules

Zhang, Bo January 2002 (has links)
The main theme covered in this thesis is experimentalstudies of quantum dynamics and coherent control in homonuclearalkali diatomic molecules by ultrafast laser spectroscopy iththe implementation of pump-probe techniques. A series of experiments have been performed on the Rb2molecules in a molecular beam as well as in a thermal oven. Thereal-time molecular quantum dynamics of the predissociatingelectronically excited D(3)1Πu state of Rb2, which couples to/intersects several otherneighbouring states, is investigated using wavepackets. Thepredissociation of the D state, explored by this wavepacketmethod, arises from two independent states, the (4)3Σu+and (1)3∆u, for which the second corresponds to a much fasterdecay channel above a sharp energy threshold around 430 nm. Thelifetime of the D state above the energy threshold is obtained,τ ≈ 5 ps, by measuring the decay time of thewavepacket in a thermal oven. Further experimentalinvestigation performed in a molecular beam together withquantum calculations of wavepacket dynamics on the D state haveexplored new probe channels of wavepacket evolution: theD′(3)1Σu+ channel, which exhibits vibrational motionin a shelf state and the (4)3Σu+ channel, where direct build-up of thewavefunction is observed due to its spin-orbit oupling to the Dstate. The real-time quantum dynamics of wavepackets confined totwo bound states, A1Σu+(0u+) and b3Πu(0u+), have been studied by experiment andcalculations. It is shown that these two states are fullycoupled by spin-orbit interaction, characterised by itsintermediate strength. The intermediate character of thedynamics is established by complicated wavepacket oscillationatterns and a value of 75 cm-1is estimated for the coupling strength at thestate crossing. The experiments on the Li2molecule are performed by coherent control ofrovibrational molecular wavepackets. First, the Deutsch-Jozsaalgorithm is experimentally demonstrated for three-qubitfunctions using a pure coherent superposition of Li2rovibrational eigenstates. The function’scharacter, either constant or balanced, is evaluated by firstimprinting the function, using a phase-tailored femtosecond(fs) pulse, on a coherent superposition of the molecularstates, and then projecting the superposition onto an ionicfinal state using a second fs pulse at a specific delay time.Furthermore, an amplitude-tailored fs pulse is used to exciteselected rovibrational eigenstates and collision induceddephasing of the wavepacket signal, due to Li2-Ar collisions, is studied experimentally. Theintensities of quantum beats decaying with the delay time aremeasured under various pressures and the collisional crosssections are calculated for each well-defined rovibrationalquantum beat, which set the upper limitsfor ure dephasingcross sections. <b>Keywords:</b>Ultrafast laser spectroscopy, pump-probetechnique, predissociation, wavepacket, pin-orbit interaction,coherent control, (pure) dephasing
6

Coherence of Matter and Light Waves in Localizing Media

Rayanov, Kristian 20 June 2012 (has links) (PDF)
The phenomena of coherence and localization have gained enormous research interest during the past decades. Theoretical predictions of localization have been confirmed recently in a variety of experiments in the fields of condensed matter physics and optics. We consider the widely employed model of the one-dimensional discrete nonlinear Schrödinger equation which allows for the investigation of localization of linear and nonlinear waves. We establish a generic connection between coherence and localization by showing that localized solutions are necessarily coherent. The effects of a loss of coherence are investigated numerically by applying random dephasing. The onset of a diffusive spreading regime is observed as a generic feature for persistent dephasing, which eventually destroys localization. After finite integration times maximal delocalization is achieved for a certain rate and strength of dephasing, resulting from the competition between destroying the initial wave packet on the one hand and not suppressing spreading too much on the other. When dephasing is switched off at a certain time, a loss or gain of coherence in linear wave packets directly corresponds to delocalization or stronger localization. This leads to stable partially coherent wave packets. In contrast, localization of nonlinear waves after dephasing is connected to the efforts of establishing complete coherence, at least for asymptotically long times. On intermediate time scales, however, various interesting partially coherent regimes can be observed. / Die Phänomene von Kohärenz und Lokalisierung haben sich in den letzten Jahrzehnten zum Schwerpunkt zahlreicher Forschungsinteressen entwickelt. Erst kürzlich wurden theoretische Vorhersagen von Lokalisierung in verschiedensten Experimenten in den Bereichen der Festkörperphysik und Optik bestätigt. In dieser Arbeit wird das häufig angewendete Modell der eindimensionalen diskreten nichtlinearen Schrödingergleichung betrachtet, welches die Untersuchung der Lokalisierung von linearen und nichtlinearen Wellen ermöglicht. Eine generelle Verbindung zwischen Kohärenz und Lokalisierung wird gezeigt, wonach lokalisierte Lösungen notwendigerweise kohärent sind. Die Auswirkungen eines Verlustes von Kohärenz werden numerisch durch Anwendung unterschiedlicher Methoden eines zufälligen Dephasierens untersucht. Ein permanentes Dephasieren führt stets zum Auftreten eines diffusiven Regimes, welches letztlich die Zerstörung von Lokalisierung bedingt. Nach einer endlichen Integrationszeit wird jedoch eine maximale Delokalisierung nur durch eine bestimmte Rate und Stärke des Dephasierens bewirkt, resultierend aus einem Wettstreit zwischen möglichst schneller Zerstörung des ursprünglichen Wellenpaketes auf der einen Seite und nicht zu starker Behinderung des Zerfließens auf der anderen. Wird das Dephasieren nach einer bestimmten Zeit abgeschaltet, so entspricht ein folglicher Verlust oder Zugewinn an Kohäarenz in einem linearen Wellenpaket direkt einem Verlust oder Zugewinn von Lokalisierung. Dabei treten im allgemeinen stabile teil-kohärente Wellenpakete auf. Im Gegensatz dazu ist Lokalisierung nichtlinearer Wellenpakete stets mit den Bemühungen verbunden, vollständige Kohärenz wiederherzustellen, zumindest für asymptotisch lange Zeiten. Auf mittleren Zeitskalen können jedoch verschiedene interessante teil-kohärente Strukturen beobachtet werden.
7

Experimental Studies of Quantum Dynamics and Coherent Control in Homonuclear Alkali Diatomic Molecules

Zhang, Bo January 2002 (has links)
<p>The main theme covered in this thesis is experimentalstudies of quantum dynamics and coherent control in homonuclearalkali diatomic molecules by ultrafast laser spectroscopy iththe implementation of pump-probe techniques.</p><p>A series of experiments have been performed on the Rb2molecules in a molecular beam as well as in a thermal oven. Thereal-time molecular quantum dynamics of the predissociatingelectronically excited D(3)<sup>1</sup>Πu state of Rb<sub>2</sub>, which couples to/intersects several otherneighbouring states, is investigated using wavepackets. Thepredissociation of the D state, explored by this wavepacketmethod, arises from two independent states, the (4)<sup>3</sup>Σ<sub>u</sub><sup>+</sup>and (1)<sup>3</sup>∆<sub>u</sub>, for which the second corresponds to a much fasterdecay channel above a sharp energy threshold around 430 nm. Thelifetime of the D state above the energy threshold is obtained,τ ≈ 5 ps, by measuring the decay time of thewavepacket in a thermal oven. Further experimentalinvestigation performed in a molecular beam together withquantum calculations of wavepacket dynamics on the D state haveexplored new probe channels of wavepacket evolution: theD′(3)1Σu+ channel, which exhibits vibrational motionin a shelf state and the (4)<sup>3</sup>Σu+ channel, where direct build-up of thewavefunction is observed due to its spin-orbit oupling to the Dstate.</p><p>The real-time quantum dynamics of wavepackets confined totwo bound states, A<sup>1</sup>Σ<sub>u</sub><sup>+</sup>(0<sub>u</sub><sup>+</sup>) and b<sup>3</sup>Π<sub>u</sub>(0<sub>u</sub><sup>+</sup>), have been studied by experiment andcalculations. It is shown that these two states are fullycoupled by spin-orbit interaction, characterised by itsintermediate strength. The intermediate character of thedynamics is established by complicated wavepacket oscillationatterns and a value of 75 cm<sup>-1</sup>is estimated for the coupling strength at thestate crossing.</p><p>The experiments on the Li<sub>2</sub>molecule are performed by coherent control ofrovibrational molecular wavepackets. First, the Deutsch-Jozsaalgorithm is experimentally demonstrated for three-qubitfunctions using a pure coherent superposition of Li<sub>2</sub>rovibrational eigenstates. The function’scharacter, either constant or balanced, is evaluated by firstimprinting the function, using a phase-tailored femtosecond(fs) pulse, on a coherent superposition of the molecularstates, and then projecting the superposition onto an ionicfinal state using a second fs pulse at a specific delay time.Furthermore, an amplitude-tailored fs pulse is used to exciteselected rovibrational eigenstates and collision induceddephasing of the wavepacket signal, due to Li<sub>2</sub>-Ar collisions, is studied experimentally. Theintensities of quantum beats decaying with the delay time aremeasured under various pressures and the collisional crosssections are calculated for each well-defined rovibrationalquantum beat, which set the upper limitsfor ure dephasingcross sections.</p><p><b>Keywords:</b>Ultrafast laser spectroscopy, pump-probetechnique, predissociation, wavepacket, pin-orbit interaction,coherent control, (pure) dephasing</p>
8

Aplicação da espectroscopia de ressonância magnética nuclear (RMN) à toxicologia forense

Soares de Araújo Filho, Vanduir January 2006 (has links)
Made available in DSpace on 2014-06-12T15:54:00Z (GMT). No. of bitstreams: 2 arquivo5189_1.pdf: 2087717 bytes, checksum: 1718a5a73d49c7021a82fe893f78dbfe (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2006 / A Ressonância Magnética Nuclear (RMN) e a Cromatografia em fase gasosa acoplada à espectrometria de massas (GC/MS) fornecem informações sobre a estrutura química de substâncias, bem como, sobre a constituição qualitativa e quantitativa de amostras sem a necessidade de padrões de análise ou pré-tratamento de amostras. Uma jovem estudante de 19 anos morreu de forma súbita após inalar um aerossol cujo componente principal, o 1-1-dicloro-1-fluoretano (HCFC-141b), foi identificado por meio de RMN e GC/MS. Nas vísceras e no sangue da vítima não foram detectados venenos, álcool ou outras drogas. Os resultados dos exames necroscópico, toxicológico e microscópico não excluem a hipótese de morte por inalação do HCFC-141b e estabelecem dois mecanismos de morte como viáveis: asfixia e arritmia cardíaca. As análises realizadas e os dados do inquérito policial suportam probabilisticamente a hipótese de morte por arritmia cardíaca fatal que pode ter ocorrido de forma associada com asfixia. Algumas técnicas de RMN como ¹H, ¹³C, Distortionless Enhancement by Polarization Transfer (DEPT), Cross-Polarization and Magic Angle Spinning (CP/MAS) and Dipolar Dephasing (DD) foram usadas para caracterizar amostras de cocaína. Os deslocamentos químicos dos espectros obtidos foram atribuídos por meio de Heteronuclear Correlation (HETCOR) e Heteronuclear Multiple Bond Correlation (HMBC). As amostras foram primariamente caracterizadas por espectrometria de massas cujos espectros foram comparados com dados obtidos na literatura. Os resultados obtidos indicam que ¹H, ¹³C e DEPT são técnicas bastante eficientes para caracterização de amostras ilícitas de cocaína no estado líquido e que por meio de CP/MAS e CP/MAS/DD RMN é possível distinguir o crack do cloridrato de cocaína de uma maneira não destrutiva. Portanto, a RMN é uma excelente ferramenta para caracterização de amostras ilícitas de cocaína
9

Kvantový popis superzářivosti emitorů s plazmonicky zprostředkovanou interakcí / Quantum description of superradiance of emitters with plasmon-mediated interaction

Olivíková, Gabriela January 2017 (has links)
Superradiance is an enhanced decay of an excited system of emitters resulting from their mutual coupling. This thesis is focused on superradiance of the emitters coupled via their interaction with a plasmonic nanoparticle. So-called plasmon-mediated superradiance results in even stronger enhancement of the decay rate as the nanoparticle serves as an additional decay chanel. We have developed a quantum model of the system of emitters coupled to a plasmonic nanoparticle, which allows us to differentiate between a pure dephasing and decay processes. We show that the pure dephasing can destroy the cooperative effect leading to superradiance. Furthermore, we have studied how the direct mutual coupling between emitters affects time evolution of the system in dependence on its configuration, and we show conditions when a decay of the system is dramatically decreased by direct coupling.
10

Renormalization-Group Theory for Quantum Dissipative Systems in Nonequilibrium / Renormierungsgruppentheorie für dissipative Quantensysteme im Nichtgleichgewicht

Keil, Markus 29 January 2002 (has links)
No description available.

Page generated in 0.0652 seconds